首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study is to determine whether the linear viscoelastic properties of an abdominal aortic aneurysm thrombus can be determined by rheometry. Although large strains occur in the in vivo situation, in this work only linear behavior is studied to show the applicability of the described methods. A thrombus exists of several layers that vary in composition, structure and mechanical properties. Two types of thrombus are described. In discrete transition thrombi the layers are not or at most weakly attached to each other and the structure of each layer is different. Continuous transition thrombi consist of strongly attached layers whose structure changes gradually throughout the thickness of the thrombus. Shear experiments are performed on samples from both types of thrombus on a rotational rheometer using a parallel plate geometry. In the discrete type the storage modulus G' cannot be assumed equal for the different layers. In the continuous thrombus, G', changes gradually throughout the layered structure. In both types the loss modulus, G', does not vary throughout the thrombus. Furthermore, it was found that Time-Temperature Superposition is applicable to thrombus tissue. Since results were reproducible it can be concluded that the method we used to determine the viscoelastic properties is applicable to thrombus tissue.  相似文献   

2.
Shear linear behavior of brain tissue over a large frequency range   总被引:3,自引:0,他引:3  
The literature review about the shear linear properties of brain tissue reveals both a large discrepancy in the existing data and a crucial lack of information at high frequencies associated with traffic road and non-penetrating ballistic impacts. The purpose of this study is to clarify and to complement the linear material characterisation of brain tissue. New data at small strains and high frequencies were obtained from oscillatory experiments. The tests were performed on thin porcine white matter samples (corona radiata) using an original custom-designed oscillatory shear testing device. At 37 degrees C, the results showed that the mean storage modulus (G') and the mean loss modulus (G') increased with the frequency (0.1 to 6310 Hz) from 2.1+/-0.9 kPa to 16.8+/-2.0 kPa and from 0.4+/-0.2 kPa to 18.7+/-2.3 kPa respectively. The reliability of these new dynamic data was checked over a partially common frequency range by conducting similar experiments using a standard rheometer (Bohlin C-VOR 150). Data were also compared in the time field. From these experiments, the relaxation modulus (G(t)) was found to decrease from 24.4+/-2.1 kPa to 1.0+/-0.3 kPa between 10(-5) s and 270 s.  相似文献   

3.
The objective of the current study was to determine the in vitro passive transverse mechanical properties of skeletal muscle with Dynamic Mechanical Thermal Analysis (DMTA) tests. The starting hypotheses was that the time-temperature-superposition principle could be used to expand the DMTA results to a 1 kHz frequency range. Experiments were performed with rat hind leg skeletal muscle tissue samples on a rotational rheometer using a parallel plate geometry. Because of the small size and low modulus of the samples, the standard test geometry was altered and the samples were shifted from the center to the edge of the plates. From strain sweep tests it became clear that for strains smaller than 0.003 the muscle tissue behaves linearly. In the linear region storage moduli ranged between 24 kPa (omega = 1 rad/s) and 42 kPa (omega = 100 rad/s) at T = 4 degrees C and 22 kPa and 33 kPa at 29 degrees C within the experimental frequency range. The loss modulus decreased with increasing frequency and ranged between 7 and 4 kPa at 4 degrees C and 4.5 and 3.5 kPa at 29 degrees C. Although the properties are clearly temperature dependent, a temperature shift in phase angle delta could not be detected, thus Time Temperature Superposition is not allowed for skeletal muscle in vitro.  相似文献   

4.
Tortuous arteries are often associated with aging, hypertension, atherosclerosis, and degenerative vascular diseases, but the mechanisms are poorly understood. Our recent theoretical analysis suggested that mechanical instability (buckling) may lead to tortuous blood vessels. The objectives of this study were to determine the critical pressure of artery buckling and the effects of elastin degradation and surrounding matrix support on the mechanical stability of arteries. The mechanical properties and critical buckling pressures, at which arteries become unstable and deform into tortuous shapes, were determined for a group of five normal arteries using pressurized inflation and buckling tests. Another group of nine porcine arteries were treated with elastase (8 U/ml), and the mechanical stiffness and critical pressure were obtained before and after treatment. The effect of surrounding tissue support was simulated using a gelatin gel. The critical pressures of the five normal arteries were 9.52 kPa (SD 1.53) and 17.10 kPa (SD 5.11) at axial stretch ratios of 1.3 and 1.5, respectively, while model predicted critical pressures were 10.11 kPa (SD 3.12) and 17.86 kPa (SD 5.21), respectively. Elastase treatment significantly reduced the critical buckling pressure (P < 0.01). Arteries with surrounding matrix support buckled into multiple waves at a higher critical pressure. We concluded that artery buckling under luminal pressure can be predicted by a buckling equation. Elastin degradation weakens the arterial wall and reduces the critical pressure, which thus leads to tortuous vessels. These results shed light on the mechanisms of the development of tortuous vessels due to elastin deficiency.  相似文献   

5.
Viscoelasticity of the leading edge, i.e., the lamellipodium, of a cell is the key property for a deeper understanding of the active extension of a cell's leading edge. The fact that the lamellipodium of a cell is very thin (<1000 nm) imparts special challenges for accurate measurements of its viscoelastic behavior. It requires addressing strong substrate effects and comparatively high stresses (>1 kPa) on thin samples. We present the method for an atomic force microscopy-based microrheology that allows us to fully quantify the viscoelastic constants (elastic storage modulus, viscous loss modulus, and the Poisson ratio) of thin areas of a cell (<1000 nm) as well as those of thick areas. We account for substrate effects by applying two different models-a model for well-adhered regions (Chen model) and a model for nonadhered regions (Tu model). This method also provides detailed information about the adhered regions of a cell. The very thin regions relatively near the edge of NIH 3T3 fibroblasts can be identified by the Chen model as strongly adherent with an elastic strength of approximately 1.6 +/- 0.2 kPa and with an experimentally determined Poisson ratio of approximately 0.4 to 0.5. Further from the edge of these cells, the adherence decreases, and the Tu model is effective in evaluating its elastic strength ( approximately 0.6 +/- 0.1 kPa). Thus, our AFM-based microrheology allows us to correlate two key parameters of cell motility by relating elastic strength and the Poisson ratio to the adhesive state of a cell. This frequency-dependent measurement allows for the decomposition of the elastic modulus into loss and storage modulus. Applying this decomposition and Tu's and Chen's finite depth models allow us to obtain viscoelastic signatures in a frequency range from 50 to 300 Hz, showing a rubber plateau-like behavior.  相似文献   

6.
The cornea is a highly specialized transparent tissue which covers the front of the eye. It is a tough tissue responsible for refracting the light and protecting the sensitive internal contents of the eye. The biomechanical properties of the cornea are primarily derived from its extracellular matrix, the stroma. The majority of previous studies have used strip tensile and pressure inflation testing methods to determine material parameters of the corneal stroma. Since these techniques do not allow measurements of the shear properties, there is little information available on transverse shear modulus of the cornea. The primary objectives of the present study were to determine the viscoelastic behavior of the corneal stroma in shear and to investigate the effects of the compressive strain. A thorough knowledge of the shear properties is required for developing better material models for corneal biomechanics. In the present study, torsional shear experiments were conducted at different levels of compressive strain (0–30%) on porcine corneal buttons. First, the range of linear viscoelasticity was determined from strain sweep experiments. Then, frequency sweep experiments with a shear strain amplitude of 0.2% (which was within the region of linear viscoelasticity) were performed. The corneal stroma exhibited viscoelastic properties in shear. The shear storage modulus, G′, and shear loss modulus, G″, were reported as a function of tissue compression. It was found that although both of these parameters were dependent on frequency, shear strain amplitude, and compressive strain, the average shear storage and loss moduli varied from 2 to 8 kPa, and 0.3 to 1.2 kPa, respectively. Therefore, it can be concluded that the transverse shear modulus is of the same order of magnitude as the out-of-plane Young's modulus and is about three orders of magnitude lower than the in-plane Young's modulus.  相似文献   

7.
A novel hydrogel was obtained by reticulation of chitosan with dextrin enzymatically linked to vinyl acrylate (dextrin-VA), without cross-linking agents. The hydrogel had a solid-like behaviour with G′ (storage modulus) >> G″ (loss modulus). Glucose diffusion coefficients of 3.9 × 10−6 ± 1.3 × 10−6 cm2/s and 2.9 × 10−6 ± 0.5 × 10−6 cm2/s were obtained for different substitution degrees of the dextrin-VA (20% and 70% respectively). SEM observation revealed a porous structure, with pores ranging from 50 μm to 150 μm.  相似文献   

8.
We have imaged mica coated with thin gelatin films in water, propanol, and mixtures of these two liquids by atomic force microscopy (AFM). The elastic modulus (Young's modulus) can be tuned from 20 kPa to more than 0.1 GPa depending on the ratio of propanol to water. The resolution is best in pure propanol, on the order of 20 nm, and becomes worse for the softer samples. The degradation in resolution can be understood by considering the elastic indentation of the gelatin caused by the AFM tip. This indentation becomes larger and thus the contact area becomes larger the softer the sample is. Therefore this study may be used to estimate the resolution to be expected with an AFM on other soft samples, such as cells. Nondestructive imaging was possible only by imaging at forces < 1 nN. This was difficult to achieve in contact mode because of drift in the zero load deflection of the cantilever, supposedly caused by temperature drift, but straightforward in tapping mode.  相似文献   

9.
In search for novel biomimetic scaffolds for application in vascular tissue engineering, we evaluated a series of fibrous scaffolds prepared by coelectrospinning tertiary blends of poly(lactide-co-glycolide) (PLGA), gelatin, and elastin (PGE). By systematically varying the ratios of PLGA and gelatin, we could fine-tune fiber size and swelling upon hydration as well as the mechanical properties of the scaffolds. Of all PGE blends tested, PGE321 (PLGA, gelatin, elastin v/v/v ratios of 3:2:1) produced the smallest fiber size (317 ± 46 nm, 446 ± 69 nm once hydrated) and exhibited the highest Young's modulus (770 ± 131 kPa) and tensile strength (130 ± 7 kPa). All PGE scaffolds supported the attachment and metabolization of human endothelial cells (ECs) and bovine aortic smooth muscle cells (SMCs) with some variances in EC morphology and cytoskeletal spreading observed at 48 h postseeding, whereas no morphologic differences were observed at confluence (day 8). The rate of metabolization of ECs, but not of SMCs, was lower than that on tissue culture plastic and depended on the specific PGE composition. Importantly, PGE scaffolds were capable of guiding the organotypic distribution of ECs and SMCs on and within the scaffolds, respectively. Moreover, the EC monolayer generated on the PGE scaffold surface was nonthrombogenic and functional, as assessed by the basal and cytokine-inducible levels of mRNA expression and amidolytic activity of tissue factor, a key player in the extrinsic clotting cascade. Taken together, our data indicate the potential application of PGE scaffolds in vascular tissue engineering.  相似文献   

10.
Shear wave elastography (SWE) is emerging as an innovative tool to evaluate muscle properties and function. It has been shown to correlate with both passive and active muscle forces, and is sensitive to physiological processes and pathological conditions. Similarly, intramuscular pressure (IMP) is an important parameter that changes with passive and active muscle contraction, body position, exercise, blood pressure, and several pathologies. Therefore, the objective of this study was to quantify the dependency of shear modulus within the lower-leg muscles on IMP in healthy individuals. Nineteen healthy individuals (age: Mean age ± SD, 23.84 ± 6.64 years) were recruited. Shear modulus was measured using ultrasound SWE on the tibialis anterior (TA) and peroneus longus (PL) muscles using pressure cuff inflation around the thigh at 40 mmHg, 80 mmHg, and 120 mmHg. Changes in IMP were verified using a catheter connected to a blood pressure monitor. It was found that IMP was correlated to TA and PL shear modulus (spearman's rank correlation = 0.99 and 0.99, respectively). Applying a gradual increase of cuff pressure from 0 to 120 mmHg increased the shear modulus of the TA and PL muscles from 15.83 (2.46) kPa to 21.88 (4.33) kPa and from 9.64 (1.97) kPa to 12.88 (5.99) kPa, respectively. These results demonstrate that changes of muscle mechanical properties are dependent on IMP. This observation is important to improve interpretation of ultrasound elastograms and to potentially use it as a biomarker for more accurate diagnosis of pathologies related to increased IMP.  相似文献   

11.
Biomechanical properties of the human tongue are needed for finite element models of the upper airway and may be important to elucidate the pathophysiology of obstructive sleep apneoa. Tongue viscoelastic properties have not been characterized previously. Magnetic resonance elastography (MRE) is an emerging imaging technique that can measure the viscoelastic properties of soft tissues in-vivo. In this study, MRE was used to measure the viscoelastic properties of the tongue and soft palate in 7 healthy volunteers during quiet breathing. Results show that the storage shear modulus of the tongue and soft palate is 2.67±0.29 and 2.53±0.31 kPa (mean ± SD), respectively. This is the first study to investigate the mechanical properties of the tongue using MRE, and it provides necessary data for future studies of patient groups with altered upper airway function.  相似文献   

12.
Stiffness is an important parameter in determining the physical properties of living tissue. Recently, considerable biomedical attention has centered on the mechanical properties of living tissues at the single cell level. In the present paper, the Young's modulus of zona pellucida of bovine ovum was calculated using Micro Tactile Sensor (MTS) fabricated using piezoelectric (PZT) material. The sensor consists of a needle-shaped 20-microm transduction point made using a micro-electrode puller and mounted on a micro-manipulator platform. Measurements were made under microscopic control, using a suction pipette to support the ovum in the same horizontal axis as the MTS. Young's modulus of ovum was found to be 25.3+/-7.94 kPa (n=28). This value was indirectly determined based on calibration curves relating change in resonance frequency (Deltaf(0)) of the sensor with tip displacement for gelatin at concentrations of 4%, 6%, and 8%. The regression equation between the rate of change in resonance frequency (versus sensor tip displacement), Deltaf(0)/x and Young's modulus is Deltaf(0)/x (Hz/microm)=0.2992 x Young's modulus (kPa)-1.0363. It is concluded that a reason that the stiffness of ovum measured in the present study is approximately six times larger than previously reported, may be due to the absence of large deformation present in of existing methodologies.  相似文献   

13.
The stability of cold-water fish gelatin (FG), both in solution and in the gel phase, has been studied as function of both temperature and exposure towards novel proteases of marine origin. A 1% (w/v) FG solution was readily degraded by such proteases above 20 degrees C, which was expected since FG at this temperature is a random coil molecule lacking the protective triple helical structure found in collagen. The dynamic storage modulus for a 10% (w/v) FG gel increased monotonically at 4 degrees C. Ramping the temperature to 6, 8 or 10 degrees C led to a drastic reduction in G', but an apparent partial recovery of the network (increasing G') was observed with time at all temperatures. In the presence of proteases, a lower storage modulus was observed. At constant 4 degrees C, an apparent maximum value was reached after curing for 2h followed by a decrease in G' indicating protease activity. Ramping of temperature in the presence of proteases led to an even more drastic reduction in G' and no recovery of structure was observed with time. In this case, the overall rheological behaviour is a complex function of both thermal influence as well as proteolytic activity. In an endeavour to quantify the effect of the presence of proteolytic enzymes on the gelatin network, rheological investigation were undertaken where the dynamic storage moduli were recorded on different 10% (w/v) FG samples that had been acid hydrolysed to yield different average molecular weights. A significant reduction in storage modulus for average molecular weights below 50 kDa was found. This critical molecular weight most probably reflects the on-set of a regime where shorter chain lengths prevent percolation due to an increase in the loose end and sol fraction as well as a reduction in the average length of the pyrrolidine-rich regions reducing the number of possible junction zones.  相似文献   

14.
The single and triple helical organization of protein chains strongly influences the mechanical properties of gelatin-based materials. A chemical method for obtaining different degrees of helical organization in gelatin is covalent functionalization, while a physical method for achieving the same goal is the variation of the drying conditions of gelatin solutions. Here we explored how the introduction of desaminotyrosine (DAT) and desaminotyrosyl tyrosine (DATT) linked to lysine residues of gelatin influenced the kinetics and thermodynamic equilibrium of the helicalization process of single and triple helices following different drying conditions. Drying at a temperature above the helix-to-coil transition temperature of gelatin (T > T(c), called v(short)) generally resulted in gelatins with relatively lower triple helical content (X(c,t) = 1-2%) than lower temperature drying (T < T(c), called v(long)) (X(c,t) = 8-10%), where the DAT(T) functional groups generally disrupted helix formation. While different helical contents affected the thermal transition temperatures only slightly, the mechanical properties were strongly affected for swollen hydrogels (E = 4-13 kPa for samples treated by v(long) and E = 120-700 kPa for samples treated by v(short)). This study shows that side group functionalization and different drying conditions are viable options to control the helicalization and macroscopic properties of gelatin-based materials.  相似文献   

15.
Atomic force microscopy study of the secretory granule lumen.   总被引:8,自引:1,他引:7       下载免费PDF全文
We have used an atomic force microscope to study the mechanical properties of the matrix found in the lumen of secretory granules isolated from mast cells. The matrices were insoluble and had an average height of 474 +/- 197 nm. The volume of these matrices increased reversibly about tenfold by decreasing the valency of the bathing external cation (La3+ < Ca2+ < Na+). The elastic (Young's) modulus was found to decrease by about 100-fold (4.3 MPa in La3+ to 37 kPa in Na+) upon a tenfold increase in the matrix volume. A swollen granule matrix had an elastic modulus similar to that of gelatin in water. The elastic modulus was inversely related to the change in the volume of the matrix, following a relationship similar to that predicted for the elasticity of weakly cross-linked polymers. Our results show that the matrix of these secretory granules have the mechanical properties of weak ion exchange resins, lending strong support to an ion exchange mechanism for the storage and release of cationic secretory products.  相似文献   

16.
Knowledge of mechanical properties and failure mechanisms of biofilms is needed to determine how biofilms react on mechanical stress. Methods currently available cannot be used to determine mechanical properties of biofilms on a small scale with high accuracy. A novel microindentation apparatus in combination with a confocal microscope was used to determine the viscoelastic properties of Streptococcus mutans biofilms. The apparatus comprises a small glass indenter and a highly sensitive force transducer. It was shown that the present biofilm, grown under still conditions, behaves as a viscoelastic solid with a storage modulus of 1-8 kPa and a loss modulus of 5-10 kPa at a strain of 10%. Biofilm failure was investigated visually through a confocal microscope by dragging the indenter through the biofilm. It was shown that the tensile strength of the biofilm is predominantly determined by the tensile strength of the extracellular polysaccharide matrix. The combination of microindentation and confocal microscopy is a promising technique to determine and characterize the mechanical properties of soft materials in various fields of microbiology.  相似文献   

17.
Braidot AA  Deiber JA 《Biorheology》1999,36(3):267-284
The linear viscoelastic model proposed in this work considers the viscoelastic nature of maturing gelatin solutions through a relaxation modulus that depends on temperature and maturation. This modulus is defined in the conceptual contexts of the classical rubber elasticity theory and the rheometric gel theory. An analysis of the relationship between the equilibrium elastic modulus and the percolation variable around the gel point is also included yielding a percolation exponent close to 1.7 as expected from previous theoretical predictions. Additionally, a simple kinetic model is proposed to follow the microstructural changes obtained as a consequence of the generation of junction zones, the number of which vary with time during the dynamic rheometric tests used in this work. Thus, the storage and loss moduli are measured at different temperatures and frequencies, during the period of gelatin maturation. The theoretical aspects of the rheological model are presented emphasizing the quantitative changes of rheological parameters with the maturation.  相似文献   

18.
A change in the elasticity of mouse zona pellucida was quantitatively evaluated during oocyte maturation, fertilization and early embryo development. Young's modulus of zona pellucida of germinal vesicle (GV), metaphase-II (MII), pronuclear (PN), 2cell, 4cell, 8cell, morulae (M) and early blastocyst (EB) stages was measured using a micro tactile sensor (MTS) and a chamber exclusively designed for the measurement. The MTS has very high sensitivity and a deformation of only 5 microm was sufficient to calculate the Young's modulus and the oocyte/embryo maintained its original spherical shape during the measurement. The Young's modulus of GV, MII, PN, 2cell, 4cell, 8cell, M and EB was 22.8+/-10.4 kPa (n=30), 8.26+/-5.22 kPa (n=74), 22.3+/-10.5 kPa (n=66), 13.8+/-3.54 kPa (n=41), 12.6+/-3.34 kPa (n=19), 5.97+/-4.97 kPa (n=6), 1.88+/-1.34 kPa (n=8) and 3.39+/-1.86 kPa (n=4), respectively. Experimental results clearly demonstrated that the mouse zona pellucida hardened following fertilization. Interestingly, once the zona pellucida hardened at the PN stage, it gradually softened as the embryo developed (i.e. it was found that the zona hardening is a transient phenomenon). Furthermore, the zona pellucida of the GV oocyte was as hard as that of the PN embryo and became soft as it matured to the MII stage. In addition, the safety of the MTS measurement for oocytes and embryos was discussed both theoretically and experimentally.  相似文献   

19.
This Article investigates different types of networks formed from tilapia fish gelatin (10% w/w) in the presence and absence of the enzymatic cross-linker microbial transglutaminase. The influence of the temperature protocol and cross-linker concentration (0-55 U mTGase/g gelatin) was examined in physical, chemical, and hybrid gels, where physical gels arise from the formation of triple helices that act as junction points when the gels are cooled below the gelation point. A combination of rheology and optical rotation was used to study the evolution of the storage modulus (G') over time and the number of triple helices formed for each type of gel. We attempted to separate the final storage modulus of the gels into its chemical and physical contributions to examine the existence or otherwise of synergism between the two types of networks. Our experiments show that the gel characteristics vary widely with the thermal protocol. The final storage modulus in chemical gels increased with enzyme concentration, possibly due to the preferential formation of closed loops at low cross-linker amount. In chemical-physical gels, where the physical network (helices) was formed consecutively to the covalent one, we found that below a critical enzyme concentration the more extensive the chemical network is (as measured by G'), the weaker the final gel is. The storage modulus attributed to the physical network decreased exponentially as a function of G' from the chemical network, but both networks were found to be purely additive. Helices were not thermally stabilized. The simultaneous formation of physical and chemical networks (physical-co-chemical) resulted in G' values higher than the individual networks formed under the same conditions. Two regimes were distinguished: at low enzyme concentration (10-20 U mTGase/g gelatin), the networks were formed in series, but the storage modulus from the chemical network was higher in the presence of helices (compared to pure chemical gels); at higher enzyme concentration (30-40 U mTGase/g gelatin), strong synergistic effects were found as a large part of the covalent network became ineffective upon melting of the helices.  相似文献   

20.
Wu Y  Wu M  Zhang Y  Li W  Gao Y  Li Z  Wang Z  Lubec G  Zhang C 《Amino acids》2012,43(3):1383-1388
Lyophilization has been widely used for preservation, such as in food industry, pharmacy, biotechnology and tissues engineering, etc. However, there is no report on whether it could affect stability of RNA and protein levels in biological tissue samples. Herein we show that lyophilization can be used for storage of biological tissue samples without loss of bioactivities even stored at room temperature for 7-14?days. To address this issue, C57BL mouse tissues were prepared and dried by lyophilization and a baking method, respectively, followed by examination of morphological structure and total proteins by SDS-PAGE as well as gelatin zymography. Subsequently, the stability of RNAs and proteins, which were lyophilized and stored at room temperature (23°C) for 14?days was further examined by RT-PCR, SDS-PAGE and western blot. Results demonstrated that lyophilization did not alter total protein activities of various tissues, including enzyme activities, immunoreactivities and phosphorylation, and did not affect several RNAs in lyophilized tissues. Taken together, lyophilization may represent a valuable approach for preservation and long-distance shipment of biological samples, particularly for the international exchange of biological samples without altering their bioactivities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号