首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
Ebselen (2-phenyl-1,2-benzisoselenazol-3(2H)-one) is a selenium-containing antioxidant demonstrating anti-inflammatory and cytoprotective properties in mammalian cells and cytotoxicity in lower organisms. The mechanism underlying the antimicrobial activity of ebselen remains unclear. It has recently been proposed that, in lower organisms like yeast, the plasma membrane H+-ATPase (Pma1p) could serve as a potential target for this synthetic organoselenium compound. Using yeast and bacteria, the present study found ebselen to inhibit microbial growth in a concentration- and time-dependent manner, and yeast and Gram-positive bacteria to be more sensitive to this action (IC50 approximately 2-5 microM) than Gram-negative bacteria (IC50 < 80 microM). Washout experiments and scanning electron microscopic analysis revealed ebselen to possess fungicidal activity. In addition, ebselen was found to inhibit medium acidification by PMA1-proficient haploid yeast in a concentration-dependent manner. Additional studies comparing PMA1 (+/-) and PMA1 (+/+) diploid yeast cells revealed the mutant to be more sensitive to treatment with ebselen than the wild type. Ebselen also inhibited the ATPase activity of Pma1p from S. cerevisiae in a concentration-dependent manner. The interaction of ebselen with the sulfhydryl-containing compounds L-cysteine and reduced glutathione resulted in the complete and partial prevention, respectively, of the inhibition of Pma1p ATPase activity by ebselen. Taken together, these results suggest that the fungicidal action of ebselen is due, at least in part, to interference with both the proton-translocating function and the ATPase activity of the plasma membrane H+-ATPase.  相似文献   

3.
During exponential growth at temperatures of 30 to 39 degrees C, the specific activity of H(+)-ATPase in the plasma membrane of Saccharomyces cerevisiae (assayed at the standard temperature 30 degrees C) increased with increases in growth temperature. In addition, the optimal temperature for in vitro activity of this ATPase was 42 degrees C. Therefore, the maximum values of ATPase activity were expected to occur in cells that grew within the supraoptimal range of temperatures. Activation induced by supraoptimal temperatures was not the result of increased synthesis of this membrane enzyme. When the growth temperature increased from 30 to 40 degrees C, expression of the essential PMA1 gene, monitored either by the level of PMA1 mRNA or the beta-galactosidase activity of the lacZ-PMA1 fusion, was reduced. Consistently, quantitative immunoassays showed that the ATPase content in the plasma membrane decreased. Like ATPase activity, the efficiency of the PMA2 promoter increased with increases in growth temperature in cells that had been grown at 30 to 39 degrees C, but its level of expression was several hundred-fold lower than that of PMA1. These results suggest that the major PMA1 ATPase is activated at supraoptimal temperatures.  相似文献   

4.
The Nicotiana plumbaginifolia plasma membrane H(+)-ATPase isoform PMA2, equipped with a His(6) tag, was expressed in Saccharomyces cerevisiae and purified. Unexpectedly, a fraction of the purified tagged PMA2 associated with the two yeast 14-3-3 regulatory proteins, BMH1 and BMH2. This complex was formed in vivo without treatment with fusicoccin, a fungal toxin known to stabilize the equivalent complex in plants. When gel filtration chromatography was used to separate the free ATPase from the 14-3-3.H(+)-ATPase complex, the complexed ATPase was twice as active as the free form. Trypsin treatment of the complex released a smaller complex, composed of a 14-3-3 dimer and a fragment from the PMA2 C-terminal region. The latter was identified by Edman degradation and mass spectrometry as the PMA2 C-terminal 57 residues, whose penultimate residue (Thr-955) was phosphorylated. In vitro dephosphorylation of this C-terminal fragment prevented binding of 14-3-3 proteins, even in the presence of fusicoccin. Mutation of Thr-955 to alanine, aspartate, or a stop codon prevented PMA2 from complementing the yeast H(+)-ATPase. These mutations were also introduced in an activated PMA2 mutant (Gln-14 --> Asp) characterized by a higher H(+) pumping activity. Each mutation directly modifying Thr-955 prevented 14-3-3 binding, decreased ATPase specific activity, and reduced yeast growth. We conclude that the phosphorylation of Thr-955 is required for 14-3-3 binding and that formation of the complex activates the enzyme.  相似文献   

5.
6.
7.
PMA1 expression, plasma membrane H(+)-ATPase enzyme kinetics, and the distribution of the ATPase have been studied in carbon-starved Candida albicans induced with glucose for yeast growth at pH 4.5 and for germ tube formation at pH 6.7. PMA1 expression parallels expression of the constitutive ADE2 gene, increasing up to sixfold during yeast growth and twofold during germ tube formation. Starved cells contain about half the concentration of plasma membrane ATPase of growing cells. The amount of plasma membrane ATPase is normalized prior to either budding or germ tube emergence by the insertion of additional ATPase molecules, while ATPase antigen appears uniformly distributed over the entire plasma membrane surface during both growth phases. Glucose addition rapidly activates the ATPase twofold regardless of the pH of induction. The turnover of substrate molecules per second by the enzyme in membranes from budding cells quickly declines, but the enzyme from germ tube-forming cells maintains its turnover of substrate molecules per second and a higher affinity for Mg-ATP. The plasma membrane ATPase of C. albicans is therefore regulated at several levels; by glucose metabolism/starvation-related factors acting on gene expression, by signals generated through glucose metabolism/starvation which are thought to covalently modify the carboxyl-terminal domain of the enzyme, and possibly by additional signals which may be specific to germ tube formation. The extended period of intracellular alkalinization associated with germ tube formation may result from regulation of proton-pumping ATPase activity coupled with higher ratios of cell surface to effective cytosolic volume.  相似文献   

8.
Secretory vesicles that accumulate in the temperature-sensitive sec6-4 strain of yeast have been shown to contain a vanadate-sensitive ATPase, presumably en route to the plasma membrane (Walworth, N. C., and Novick, P. J. (1987) J. Cell Biol. 105, 163-174). We have now established this enzyme to be a fully functional form of the PMA1 [H+]ATPase, identical in its catalytic properties to that found in the plasma membrane. In addition, the secretory vesicles are sealed tightly enough to permit the measurement of ATP-dependent proton pumping with fluorescent probes. We have gone on to exploit the vesicles as an expression system for site-directed mutants of the ATPase. For this purpose, a sec6-4 strain has been constructed in which the chromosomal PMA1 gene is under control of the GAL1 promoter; the mutant pma1 allele to be studied is introduced on a centromeric plasmid under the control of a novel heat shock promoter. In galactose medium at 23 degrees C, the wild-type ATPase is produced and supports normal vegetative growth. When the cells are switched to glucose medium at 37 degrees C, however, the wild-type gene turns off, the mutant gene turns on, and secretory vesicles accumulate. The vesicles contain a substantial amount of newly synthesized, plasmid-encoded ATPase (5-10% of total vesicle protein), but only traces of residual wild-type PMA1 ATPase and no detectable mitochondrial ATPase, vacuolar ATPase, or acid or alkaline phosphatase. To test the expression strategy, we have made use of pma1-105 (Ser368----Phe), a vanadate-resistant mutant previously characterized by standard methods (Perlin, D. S., Harris, S. L., Seto-Young, D., and Haber, J. E. (1989) J. Biol. Chem. 264, 21857-21864). In secretory vesicles, as expected, the plasmid-borne pma1-105 allele gives rise to a mutant enzyme with a reduced rate of ATP hydrolysis and a 100-fold increase in Ki for vanadate. Proton pumping is similarly resistant to vanadate. Thus, the vesicles appear well suited for the production and characterization of mutant forms of the PMA1 [H+]ATPase. They should also aid the study of other yeast membrane proteins that are essential for growth as well as heterologous proteins whose appearance in the plasma membrane may be toxic to the cell.  相似文献   

9.
cDNA clones from Nicotiana plumbaginifolia have been isolated by hybridization to a yeast H+-ATPase gene. The largest one encodes a polypeptide (PMA2) of 956 amino acid residues which exhibits a homology of 73% with a limited protein sequence obtained from purified oat plasma membrane H+-ATPase (Schaller and Sussman, Plant Physiol. 86, 512-516, 1988) and an 82% homology with the Arabidopsis thaliana pma gene (Harper et al., Proc. Natl. Acad. Sci. USA 86, 1234-1238). It is therefore concluded that the N. plumbaginifolia pma2 gene encodes a plasma membrane H+-ATPase. Southern blot hybridization indicates that the plant pma2 gene belongs to a multigene family. Partial sequences of cDNA clones show that at least three pma genes are expressed in root cells.  相似文献   

10.
Calcineurin, or PP2B, plays a critical role in mediating Ca2+-dependent signaling in many cell types. In yeast cells, this highly conserved protein phosphatase regulates aspects of ion homeostasis and cell wall synthesis. We show that calcineurin mutants are sensitive to high concentrations of Mn2+ and identify two genes, CCC1 and HUM1, that, at high dosages, increase the Mn2+ tolerance of calcineurin mutants. CCC1 was previously identified by complementation of a Ca2+-sensitive (csg1) mutant. HUM1 (for "high copy number undoes manganese") is a novel gene whose predicted protein product shows similarity to mammalian Na+/Ca2+ exchangers. hum1 mutations confer Mn2+ sensitivity in some genetic backgrounds and exacerbate the Mn2+ sensitivity of calcineurin mutants. Furthermore, disruption of HUM1 in a calcineurin mutant strain results in a Ca2+-sensitive phenotype. We investigated the effect of disrupting HUM1 in other strains with defects in Ca2+ homeostasis. The Ca2+ sensitivity of pmc1 mutants, which lack a P-type ATPase presumed to transport Ca2+ into the vacuole, is exacerbated in a hum1 mutant strain background. Also, the Ca2+ content of hum1 pmc1 cells is less than that of pmc1 cells. In contrast, the Ca2+ sensitivity of vph1 mutants, which are specifically defective in vacuolar acidification, is not significantly altered by disruption of Hum1p function. These genetic interactions suggest that Hum1p may participate in vacuolar Ca2+/H+ exchange. Therefore, we prepared vacuolar membrane vesicles from wild-type and hum1 cells and compared their Ca2+ transport properties. Vacuolar membrane vesicles from hum1 mutants lack all Ca2+/H+ antiport activity, demonstrating that Hum1p catalyzes the exchange of Ca2+ for H+ across the yeast vacuolar membrane.  相似文献   

11.
The pma1-105 mutation reduces the activity of the yeast plasma membrane H(+)-ATPase and causes cells to be both low pH and ammonium ion sensitive and resistant to the antibiotic hygromycin B. Revertants that can grow at pH 3.0 and on ammonium-containing plates frequently arise by ectopic recombination between pma1-105 and PMA2, a diverged gene that shares 85% DNA sequence identity with PMA1. The gene conversion tracts of revertants of pma1-105 were determined by DNA sequencing the hybrid PMA1::PMA2 genes. Gene conversion tracts ranged from 18-774 bp. The boundaries of these replacements were short (3-26 bp) regions of sequences that were identical between PMA1 and PMA2. These boundaries were not located at the regions of greatest shared identity between the two PMA genes. Similar results were obtained among low pH-resistant revertants of another mutation, pma1-147. One gene conversion was obtained in which the resulting PMA1::PMA2 hybrid was low pH-resistant but still hygromycin B-resistant. This partially active gene differs from a wild-type revertant only by the presence of two PMA2-encoded amino acid substitutions. Thus, some regions of PMA2 are not fully interchangeable with PMA1. We have also compared the efficiency of recombination between pma1-105 and either homeologous PMA2 sequence or homologous PMA1 donor sequences inserted at the same location. PMA2 X pma1-105 recombination occurred at a rate approximately 75-fold less than PMA1 X pma1-105 events. The difference in homology between the interacting sequences did not affect the proportion of gene conversion events associated with a cross-over, as in both cases approximately 5% of the Pma(+) recombinants had undergone reciprocal translocations between the two chromosomes carrying pma1-105 and the donor PMA sequences. Reciprocal translocations were identified by a simple and generally useful nutritional test.  相似文献   

12.
The major plant plasma membrane H(+)-ATPases fall into two gene categories, subfamilies I and II. However, in many plant tissues, expression of the two subfamilies overlaps, thus precluding individual characterization. Yeast expression of PMA2 and PMA4, representatives of the two plasma membrane H(+)-ATPase subfamilies in Nicotiana plumbaginifolia, has previously shown that (i) the isoforms have distinct enzymatic properties and that (ii) PMA2 is regulated by phosphorylation of its penultimate residue (Thr) and binds regulatory 14-3-3 proteins, resulting in the displacement of the autoinhibitory C-terminal domain. To obtain insights into regulatory differences between the two subfamilies, we have constructed various chimeric proteins in which the 110-residue C-terminal-encoding region of PMA2 was progressively substituted by the corresponding sequence from PMA4. The PMA2 autoinhibitory domain was localized to a region between residues 851 and 915 and could not be substituted by the corresponding region of PMA4. In contrast to PMA2, PMA4 was poorly phosphorylated at its penultimate residue (Thr) and bound 14-3-3 proteins weakly. The only sequence difference around the phosphorylation site is located two residues upstream of the phosphorylated Thr. It is Ser in PMA2 (as in most members of subfamily I) and His in PMA4 (as in most members of subfamily II). Substitution of His by Ser in PMA4 resulted in an enzyme showing increased phosphorylation status, 14-13-3 binding, and ATPase activity, as well as improved yeast growth. The reverse substitution of Ser by His in PMA2 resulted in the failure of this enzyme to complement the absence of yeast H(+)-ATPases. These results show that the two plant H(+)-ATPase subfamilies differ functionally in their regulatory properties.  相似文献   

13.
In cultured human 1321N1 astrocytoma cells, muscarinic receptor stimulation leads to phosphoinositide hydrolysis, formation of inositol phosphates, and mobilization of intracellular Ca2+. Treatment of these cells with 1 microM 4 beta-phorbol 12 beta-myristate 13 alpha-acetate (PMA) completely blocks the carbachol-stimulated formation of [3H]inositol mono-, bis-, and trisphosphate ( [3H]InsP, [3H]InsP2, and [3H]InsP3). The concentrations of PMA that give half-maximal and 100% inhibition of carbachol-induced [3H]InsP formation are 3 nM and 0.5 microM, respectively. Inactive phorbol esters (4 alpha-phorbol 12,13-didecanoate and 4 beta-phorbol), at 1 microM, do not inhibit carbachol-stimulated [3H]InsP formation. The KD of the muscarinic receptor for [3H]N-methyl scopolamine is unchanged by PMA treatment, while the IC50 for carbachol is modestly increased. PMA treatment also abolishes carbachol-induced 45Ca2+ efflux from 1321N1 cells. The concomitant loss of InsP3 formation and Ca2+ mobilization is strong evidence in support of a causal relationship between these two responses. In addition, our finding that PMA blocks hormone-stimulated phosphoinositide turnover suggests that there may be feedback regulation of phosphoinositide metabolism through the Ca2+- and phospholipid-dependent protein kinase.  相似文献   

14.
The plasma-membrane H(+)-ATPase gene PMA1 was sequenced in four Dio-9-resistant strains of Saccharomyces cerevisiae, isolated independently. The same amino acid substitution Ala608----Thr was found in the four mutated strains. The mutant ATPase activity was decreased while the Km value for MgATP was increased. The ATPase efficiency (V/Km) of the mutant was reduced by a factor of 25 under acid conditions (pH 5.5), and by a factor of 10 at physiological pH (pH 6.6). The mutation also strongly reduces the inhibition by vanadate of ATPase activity, suggesting that the altered amino acid is involved in phosphate binding and/or in the E1-E2 transition.  相似文献   

15.
The (Ca2+ + Mg2+)-adenosine triphosphatase (ATPase) of sarcoplasmic reticulum contains a cysteine residue at position 12 of its sequence. This sulfhydryl group was 1 out of a total of 10-11 that were labeled by treatment of sarcoplasmic reticulum vesicles with N-[3H]ethylmaleimide under saturating conditions. This was shown by isolating a 31-residue NH2-terminal peptide from a tryptic digest of the succinylated ATPase, prepared from N-[3H]ethylmaleimide-labeled vesicles. Reaction of the vesicles with glutathione maleimide, parachloromercuribenzoic acid, or parachloromercuriphenyl sulfonic acid, membrane-impermeant reagents, prevented further reaction of sulfhydryl groups with N-ethylmaleimide. This result indicates that all sulfhydryl groups that are reactive with N-ethylmaleimide are on the outside of the vesicles. Since Cys12 is located in a hydrophilic NH2-terminal portion of the ATPase, the labeling results suggest that the NH2 terminus of the ATPase is on the cytoplasmic side of the membrane. These results are consistent with earlier observations (Reithmeier, R. A. F., de Leon, S., and MacLennan, D. H. (1980) J. Biol. Chem. 255, 11839-11846) that the (Ca2+ + Mg2+)-ATPase is synthesized without an NH2-terminal signal sequence.  相似文献   

16.
Sarcoplasmic reticulum Ca2+-ATPase structure and organization in the membrane has been studied by infrared spectroscopy by decomposition of the amide I band. Besides the component bands assignable to secondary structure elements such as alpha-helix, beta-sheet, etc...., two unusual bands, one at 1,645 cm(-1) in H2O buffer and the other at 1,625 cm(-1) in D2O buffer are present. By perturbing the protein using temperature and limited proteolysis, the band at 1,645 cm(-1) is tentatively assigned to alpha-helical segments located in the cytoplasmic domain and coupled to beta-sheet structure, whereas the band at 1,625 cm(-1) arises probably from monomer-monomer contacts in the native oligomeric protein. The secondary structure obtained is 33% alpha-helical segments in the transmembrane plus stalk domain; 20% alpha-helix and 22% beta-sheet in the cytoplasmic domain plus 19% turns and 6% unordered structure. Thermal unfolding of Ca2+-ATPase is a complex process that cannot be described as a two-state denaturation. The results obtained are compatible with the idea that the protein is an oligomer at room temperature. The loss of the 1,625 cm(-1) band upon heating would be consistent with a disruption of the oligomers in a process that later gives rise to aggregates (appearance of the 1,618 cm(-1) band). This picture would also be compatible with early results suggesting that processes governing Ca2+ accumulation and ATPase activity are uncoupled at temperatures above 37 degrees C, so that while ATPase activity proceeds at high rates, Ca2+ accumulation is inhibited.  相似文献   

17.
18.
Treatment of isolated hepatocytes with the tumor-promoting agent, 4 beta-phorbol 12 beta-myristate 13 alpha-acetate (PMA) produced a time- and dose-dependent, non-competitive inhibition of alpha 1-adrenergic responses, including the activation of phosphorylase, increase in Ca2+ efflux, increase in free cytosolic Ca2+, and release of myo-inositol-1,4,5-P3. The actions of [8-arginine] vasopressin (AVP) on liver cells were also inhibited by PMA, but the inhibition could be overcome by high AVP concentrations. No significant inhibition of beta-adrenergic and glucagon-mediated activation of phosphorylase was induced by PMA and no inhibitory or synergistic effects of PMA were observed on the dose-dependent activation of phosphorylase by the Ca2+ ionophore A23187. In radioligand binding studies, PMA did not directly interfere with [3H]prazosin specific binding, the displacement of [3H]prazosin by (-)-norepinephrine nor with [3H]AVP specific binding to purified liver plasma membranes. Plasma membranes prepared from livers perfused with PMA exhibited a 30-44% reduction in [3H]prazosin binding capacity. Under identical conditions [3H]AVP binding was unchanged. The alpha 1-receptors remaining in membranes from PMA-treated livers had equivalent affinities for [3H]prazosin and (-)-norepinephrine, and were unaffected in terms of coupling to guanine nucleotide-regulating proteins as indicated by the ability of guanosine 5'-(beta, gamma-imido)triphosphate to promote the conversion of the remaining alpha 1-receptors into a low affinity state. These data indicate that tumor promoters are potent antagonists of alpha 1-adrenergic and vasopressin (low dose) responses in liver. It is proposed that PMA acting via protein kinase C (which presumably mediates the action of PMA) exerts its inhibitory action on alpha 1-adrenergic responses at the alpha 1-adrenergic receptor itself and also at a site close to or before myo-inositol-1,4,5-P3 release.  相似文献   

19.
20.
We have previously shown that melittin, a bee venom peptide, potently inhibited the catalytic and transport functions of rabbit gastric (H+ + K+)ATPase. A radioactive photoaffinity analog of melittin, ([125I]azidosalicylyl melittin), labeled the (H+ + K+)ATPase. These results suggested that melittin exerted inhibitory effects through direct interaction with the (H+ + K+)ATPase. In this study we attempt to define the melittin-binding domain of the (H+ + K+)ATPase using conformation-dependent proteolytic fragmentation of [125I]azidosalicylyl melittin-labeled hog gastric (H+ + K+)ATPase. In the presence of KCl (E2 form) the 95,000-Da [125I]-azidosalicylyl melittin-labeled (H+ + K+)ATPase was cleaved by trypsin to a 40,000-Da NH2-terminal tryptic fragment and a 56,000-Da COOH-terminal fragment through cleavage at Arg 454 of the (H+ + K+)ATPase. The 40,000-Da fragment was labeled by [125I]-azidosalicylyl melittin. The 56,000-Da fragment was not labeled. When unmodified (H+ + K+)ATPase was trypsinized in the presence of KCl, and the fragments were then reacted with [125I]azidosalicylyl melittin, similar tryptic fragmentation results were obtained. In the absence of KCl (E1 form), the 56,000- and 40,000-Da fragments did not accumulate. Chymotryptic hydrolysis of [125I]azidosalicylyl melittin-labeled (H+ + K+)-ATPase was very slow in the presence of KCl (E2 form). In the absence of KCl (E1 form), chymotryptic hydrolysis was more rapid, with accumulation of a major 42,000-Da fragment which was radiolabeled. The melittin-binding region on the (H+ + K+)ATPase is N-terminal to Arg 454 of the (H+ + K+)ATPase. This region is known to contain the aspartyl phosphate residue (Asp 385), the site of phosphoenzyme formation on the (H+ + K+)ATPase. Melittin is also known to bind to calmodulin and other proteins. Another known calmodulin-binding peptide with a different sequence but similar structure, Trp-3, (Leu-Lys-Trp-Lys-Lys-Leu-Leu-Lys-Leu-Leu-Lys-Lys-Leu-Leu-Lys-Leu-Gly) also inhibited the (H+ + K+)ATPase and label incorporation by [125I]azidosalicylyl melittin. These Trp-3 results suggested that the (H+ + K+)ATPase contains a peptide-binding domain which is similar to the peptide-binding domains found on other melittin-binding proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号