首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
2.
3.
4.
Bromodomain-PHD finger protein 1 (BRPF1) is part of the MOZ HAT complex and contains a unique combination of domains typically found in chromatin-associated factors, which include plant homeodomain (PHD) fingers, a bromodomain and a proline-tryptophan-tryptophan-proline (PWWP) domain. Bromodomains are conserved structural motifs generally known to recognize acetylated histones, and the BRPF1 bromodomain preferentially selects for H2AK5ac, H4K12ac and H3K14ac. We solved the X-ray crystal structures of the BRPF1 bromodomain in complex with the H2AK5ac and H4K12ac histone peptides. Site-directed mutagenesis on residues in the BRPF1 bromodomain-binding pocket was carried out to investigate the contribution of specific amino acids on ligand binding. Our results provide critical insights into the molecular mechanism of ligand binding by the BRPF1 bromodomain, and reveal that ordered water molecules are an essential component driving ligand recognition.  相似文献   

5.
6.
7.
8.
9.
BACKGROUND: Since the demonstration that the protease of the human immunodeficiency virus (HIV Pr) is essential in the viral life cycle, this enzyme has become one of the primary targets for antiviral drug design. The murine monoclonal antibody 1696 (mAb1696), produced by immunization with the HIV-1 protease, inhibits the catalytic activity of the enzyme of both the HIV-1 and HIV-2 isolates with inhibition constants in the low nanomolar range. The antibody cross-reacts with peptides that include the N terminus of the enzyme, a region that is highly conserved in sequence among different viral strains and that, furthermore, is crucial for homodimerization to the active enzymatic form. RESULTS: We report here the crystal structure at 2.7 A resolution of a recombinant single-chain Fv fragment of mAb1696 as a complex with a cross-reactive peptide of the HIV-1 protease. The antibody-antigen interactions observed in this complex provide a structural basis for understanding the origin of the broad reactivity of mAb-1696 for the HIV-1 and HIV-2 proteases and their respective N-terminal peptides. CONCLUSION: A possible mechanism of HIV-protease inhibition by mAb1696 is proposed that could help the design of inhibitors aimed at binding inactive monomeric species.  相似文献   

10.
11.
12.
13.
Structural basis of dcp2 recognition and activation by dcp1   总被引:3,自引:0,他引:3  
A critical step in mRNA degradation is the removal of the 5' cap structure, which is catalyzed by the Dcp1-Dcp2 complex. The crystal structure of an S. pombe Dcp1p-Dcp2n complex combined with small-angle X-ray scattering analysis (SAXS) reveals that Dcp2p exists in open and closed conformations, with the closed complex being, or closely resembling, the catalytically more active form. This suggests that a conformational change between these open and closed complexes might control decapping. A bipartite RNA-binding channel containing the catalytic site and Box B motif is identified with a bound ATP located in the catalytic pocket in the closed complex, suggesting possible interactions that facilitate substrate binding. Dcp1 stimulates the activity of Dcp2 by promoting and/or stabilizing the closed complex. Notably, the interface of Dcp1 and Dcp2 is not fully conserved, explaining why the Dcp1-Dcp2 interaction in higher eukaryotes requires an additional factor.  相似文献   

14.
Structural basis of collagen recognition by integrin alpha2beta1   总被引:10,自引:0,他引:10  
We have determined the crystal structure of a complex between the I domain of integrin alpha2beta1 and a triple helical collagen peptide containing a critical GFOGER motif. Three loops on the upper surface of the I domain that coordinate a metal ion also engage the collagen, with a collagen glutamate completing the coordination sphere of the metal. Comparison with the unliganded I domain reveals a change in metal coordination linked to a reorganization of the upper surface that together create a complementary surface for binding collagen. Conformational changes propagate from the upper surface to the opposite pole of the domain, suggesting both a basis for affinity regulation and a pathway for signal transduction. The structural features observed here may represent a general mechanism for integrin-ligand recognition.  相似文献   

15.
The calnexin cycle is a process by which glycosylated proteins are subjected to folding cycles in the endoplasmic reticulum lumen via binding to the membrane protein calnexin (CNX) or to its soluble homolog calreticulin (CRT). CNX and CRT specifically recognize monoglucosylated Glc1Man9GlcNAc2 glycans, but the structural determinants underlying this specificity are unknown. Here, we report a 1.95-Å crystal structure of the CRT lectin domain in complex with the tetrasaccharide α-Glc-(1→3)-α-Man-(1→2)-α-Man-(1→2)-Man. The tetrasaccharide binds to a long channel on CRT formed by a concave β-sheet. All four sugar moieties are engaged in the protein binding via an extensive network of hydrogen bonds and hydrophobic contacts. The structure explains the requirement for glucose at the nonreducing end of the carbohydrate; the oxygen O2 of glucose perfectly fits to a pocket formed by CRT side chains while forming direct hydrogen bonds with the carbonyl of Gly124 and the side chain of Lys111. The structure also explains a requirement for the Cys105–Cys137 disulfide bond in CRT/CNX for efficient carbohydrate binding. The Cys105–Cys137 disulfide bond is involved in intimate contacts with the third and fourth sugar moieties of the Glc1Man3 tetrasaccharide. Finally, the structure rationalizes previous mutagenesis of CRT and lays a structural groundwork for future studies of the role of CNX/CRT in diverse biological pathways.  相似文献   

16.
To identify the cellular gene target for Tat, we performed gene expression profile analysis and found that Tat up-regulates the expression of the OGG1 (8-oxoguanine-DNA glycosylase-1) gene, which encodes an enzyme responsible for repairing the oxidatively damaged guanosine, 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG). We observed that Tat induced OGG1 gene expression by enhancing its promoter activity without changing its mRNA stability. We found that the upstream AP-4 site within the OGG1 promoter is responsible and that Tat interacted with AP-4 and removed AP-4 from the OGG1 promoter by in vivo chromatin immunoprecipitation assay. Thus, Tat appears to activate OGG1 expression by sequestrating AP-4. Interestingly, although Tat induces oxidative stress known to generate 8-oxo-dG, which causes the G:C to T:A transversion, we observed that the amount of 8-oxo-dG was reduced by Tat. When OGG1 was knocked down by small interfering RNA, Tat increased the amount of 8-oxo-dG, thus confirming the role of OGG1 in preventing the formation of 8-oxo-dG. These findings collectively indicate the possibility that Tat may play a role in maintenance of the genetic integrity of the proviral and host cellular genomes by up-regulating OGG1 as a feed-forward mechanism.  相似文献   

17.
Transportin 1 (Trn1) is a transport receptor that transports substrates from the cytoplasm to the nucleus through nuclear pore complexes by recognizing nuclear localization signals (NLSs). Here we describe four crystal structures of human Trn1 in a substrate-free form as well as in the complex with three NLSs (hnRNP D, JKTBP, and TAP, respectively). Our data have revealed that (1) Trn1 has two sites for binding NLSs, one with high affinity (site A) and one with low affinity (site B), and NLS interaction at site B controls overall binding affinity for Trn1; (2) Trn1 recognizes the NLSs at site A followed by conformational change at site B to interact with the NLSs; and (3) a long flexible loop, characteristic of Trn1, interacts with site B, thereby displacing transport substrate in the nucleus. These studies provide deep understanding of substrate recognition and dissociation by Trn1 in import pathways.  相似文献   

18.
Monoubiquitination is a general mechanism for downregulating the activity of cell surface receptors by consigning these proteins for lysosome-mediated degradation through the endocytic pathway. The yeast Ede1 protein functions at the internalization step of endocytosis and binds monoubiquitinated proteins through a ubiquitin associated (UBA) domain. UBA domains are found in a broad range of cellular proteins but previous studies have suggested that the mode of ubiquitin recognition might not be universally conserved. Here we present the solution structure of the Ede1 UBA domain in complex with monoubiquitin. The Ede1 UBA domain forms a three-helix bundle structure and binds ubiquitin through a largely hydrophobic surface in a manner reminiscent of the Dsk2 UBA and the remotely homologous Cue2 CUE domains, for which high-resolution structures have been described. However, the interaction is dissimilar to the molecular models proposed for the hHR23A UBA domains bound to either monoubiquitin or Lys48-linked diubiquitin. Our mutational analyses of the Ede1 UBA domain-ubiquitin interaction reveal several key affinity determinants and, unexpectedly, a negative affinity determinant in the wild-type Ede1 protein, implying that high-affinity interactions may not be the sole criterion for optimal function of monoubiquitin-binding endocytic proteins.  相似文献   

19.
BRCT tandem domains, found in many proteins involved in DNA damage checkpoint and DNA repair pathways, were recently shown to be phosphopeptide binding motifs. Using solution nuclear magnetic resonance (NMR) spectroscopy and mutational analysis, we have characterized the interaction of BRCA1-BRCT domains with a phosphoserine-containing peptide derived from the DNA repair helicase BACH1. We show that a phenylalanine in the +3 position from the phosphoserine of BACH1 is bound to a conserved hydrophobic pocket formed between the two BRCT domains and that recognition of the phosphate group is mediated by lysine and serine side chains from the amino-terminal BRCT domain. Mutations that prevent phosphopeptide binding abolish BRCA1 function in DNA damage-induced checkpoint control. Our NMR data also reveal a dynamic interaction between BRCA1-BRCT and BACH1, where the bound phosphopeptide exists as an equilibrium of two conformations and where BRCA1-BRCT undergoes a transition to a more rigid conformation upon peptide binding.  相似文献   

20.
Structural basis for ligand recognition by integrins   总被引:1,自引:0,他引:1  
Integrins, the major cell surface receptors mediating cell-extracellular matrix (ECM) adhesion, are central to the basic physiology underlying all multicellular organisms. As the complexity of animal body architecture increased, integrins were forced to acquire recognition capabilities toward the wide variety of ECM ligands and cell surface counter-receptors that emerged during evolution. Structural determination of the integrin-ligand complexes for both I domain-containing and non-I domain-containing integrins revealed two fundamentally different types of integrin-binding surfaces. In addition, recent advances in the biochemical and pharmacological characterization of the integrin-ligand interactions are beginning to reveal how integrins achieve specific recognition of wide variety of ligands using a small binding cleft at the subunit interface common to all integrins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号