首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Starch represents the major component of virtually all plant‐derived foods consumed by man and animal. Hence, a thorough understanding of the starch biosynthetic pathway is critically important not only in understanding the biosynthesis of a major plant storage product, but also in allowing the genetic manipulation of both starch quality and quantity for human benefit. A major goal in these studies has been the identification of key steps in controlling starch levels. Evidence from a number of independent approaches clearly points to the enzyme adenosine diphosphate glucose pyrophosphorylase (AGPase) as a key regulatory step in starch synthesis. Here we highlight and summarize our understanding of this important enzyme.  相似文献   

2.
Multiple forms of ADPglucose pyrophosphorylase of rice endosperm   总被引:3,自引:0,他引:3  
ADPglucose pyrophosphorylase from developing rice ( Oryza sativa ) endosperm was purified. The final preparation yielded 6 major protein spots as separated by two-dimensional polyacrylamide electrophoresis. All 6 polypeptides had similar molecular weights of ca 50 kDa and cross-reacted with polyclonal antibodies raised against two main protein bands among them. The results suggest that the rice endosperm ADPglucose pyrophorsphorylase is tetrameric and composed of multiple subunits with similar amino acid structure.  相似文献   

3.
The contribution of the starch and soluble carbohydrate pools to the diurnal variations of leaf mass per unit area (LMA) has been investigated in tomato leaves. A glasshouse experiment was carried out with plants pruned to two or five fruits per truss. Leaflets were sampled at sunrise, noon and sunset at different positions within the leaf (basal or terminal), and on different sympods along the stem. Carbohydrate contents and LMA were significantly higher in the terminal than in the basal leaflets, except at sunrise. During the day, differences in starch accumulation between terminal and basal leaflets increased with leaf height on the plant. Among sympods, the soluble carbohydrate content of the terminal leaflets did not vary significantly, whereas at 13.00 h the LMA was minimum in the middle of the plant and maximum at the top, and the leaf starch content significantly increased half-way up the plant. The plant fruit load had only small and non-significant effects on the LMA and carbohydrate contents. The response of LMA and carbohydrate contents to changing source activity was observed under controlled climatic conditions. The starch pool of fully expanded leaves was rapidly filled and emptied under increasing and decreasing source activity. In young expanding leaves, this pool was hardly filled during daylight. On average the soluble carbohydrates did not contribute significantly to the diurnal variations in LMA, whereas fluctuations in starch explained c . 70% and 44% of these variations in the upper and lower leaves, respectively. The results are discussed with respect to the modelling of LMA at the level of individual tomato leaves or sympods.  相似文献   

4.
Characterization of phytochelatin synthase from tomato   总被引:11,自引:0,他引:11  
The enzyme that synthesizes Cd-binding phytochelatins (PCs), PC synthase, has been studied in tomato ( Lycopersicon esculentum ) cell cultures and plants. This enzyme transfers γ-GluCys from GSH or PC to either GSH or an existing polymer of (γ-GluCys)nGly. PC synthase from tomato requires GSH or PCs as substrates but cannot utilise γ-GluCys or GSSG. PC synthase is activated both in vivo and in vitro by a variety of heavy metal ions, including Cd2+, Ag+, Cu2+, Au+, Zn2+, Fe2+, Hg2+ and Pb2+. In crude protein extracts from tomato cells the enzyme has an apparent Km of 7.7 m M for GSH in the presence of 0.5 m M Cd2+, and exhibits maximum activity at pH 8.0 and 35°C. PC synthase is present in tomato cells grown in the absence of Cd. The level of enzyme activity is regulated during the cell culture cycle, with the highest activity occurring 3 days after subculture. Cadmium-resistant tomato cells growing in medium containing 6 m M CdCl2 have a 65% increase in PC synthase activity compared to unselected cells. PC synthase is also present in roots and stems of tomato plants, but not in leaves or fruits. The distribution of the enzyme in tomato plants and regulation of PC synthase activity in tomato cells indicate that PC synthase, and PCs, may have additional functions in plant metabolism that are not directly related to the formation of Cd-PC complexes in response to cadmium.  相似文献   

5.
The possible involvement of the antioxidative system in the tolerance to salt stress was studied in the cultivated tomato Lycopersicon esculentum Mill. cv. M82 (M82) and its wild salt‐tolerant relative L. pennellii (Corn) D'Arcy accession Atico (Lpa). All analyses, except that of monodehydroascorbate reductase (MDHAR), were performed of the youngest fully‐expanded leaf of control and salt (100 m M NaCl) stressed plants, 4, 7, 10, 14, 18 and 22 days after completing the stress treatment. In Lpa, constitutive level of lipid peroxidation and activities of catalase (CAT) and glutathione reductase (GR) were lower while the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX) and dehydroascorbate reductase (DHAR) were inherently higher than in M82. Relative to M82, lipid peroxidation was much lower and the activities of SOD, CAT and APX were higher in Lpa at 100 m M NaCl. The activity of DHAR decreased more in Lpa than in M82 under salt stress, and the activity of MDHAR, which was lower in Lpa than in M82 under control conditions, increased much more and to a higher level in salt‐treated Lpa plants. GR activity decreased similarly in the two species under salt stress. The results of these analyses suggest that the wild salt‐tolerant Lpa plants are better protected against active oxygen species (AOS), inherently and under salt stress, than the relatively sensitive plants of the cultivated species.  相似文献   

6.
Depolarization of tomato leaf cells by oligogalacturonide elicitors   总被引:5,自引:0,他引:5  
The electrical potential difference (Em) across the plasma membrane of tomato leaf mesophyll cells consists of a cyanide-sensitive component, presumably produced by an H+-ATPase, and a cyanide-insensitive component. Variation of Em between different batches of tissue is mainly caused by variation in the cyanide-sensitive component. Oligogalacturonide elicitors that induce the synthesis of proteinase inhibitors in tomato seedlings depolarize the Em of tomato leaf mesophyll cells. This depolarization closely resembles that caused by cyanide: they are of similar magnitude and vary in a similar manner with variation in the initial Em of different batches of tissue. Treatments with cyanide and with the elicitors have similar effects on the small depolarization caused by KCl at 10 mol m?3. The results suggest that the elicitors depolarize Em by inhibiting the plasma membrane H+-ATPase, but that the detailed mechanism of inhibition by the elicitors is different from that caused by cyanide.  相似文献   

7.
Sulphate accumulates in the rhizosphere of plants grown in hydroponic systems. To avoid such sulphate accumulation and promote the use of environmentally sound hydroponic systems, we examined the effects of four sulphate concentrations (0.1, 5,2, 10.4 and 20.8 m M ) on photosynthesis, ribulose-l,5-bisphosphate carboxylase/oxygenase (Rubisco, EC 4.1.1.39) activities and related physiological processes in greenhouse–grown tomato plants ( Lycopersicon esculentum Mill. cv. Trust). The lowest sulphate concentration (0.1 m M ) significantly decreased photosynthetic capacity (Pc) and Rubisco activities on a leaf area basis. This result was supported by our data for dry matter per plant, which was low for plants in the 0.1 m M treatment. The photosynthesis-related variables such as leaf conductance, chlorophyll and soluble protein were lowest for the 0.1 m M treatment. Both total Rubisco activity and the activated ratio were reduced with this treatment. However, Rubisco activities expressed per g of protein or per g of chlorophyll were not significantly affected. These results suggest that sulphur deficiency depressed Pc– by reducing the amount of both Rubisco and chlorophyll and by causing an inactivation of Rubisco. The ratio of organic sulphur vs organic nitrogen (S/N) in plants of the 0.1 m M treatment was far below the normal values. This low S/N ratio might be accountable for the negative effect of low sulphate on Pc and plant growth. Pc and dry matter were not affected until sulphate concentration in the nutrient solution reached a high level of 20.8 m M .  相似文献   

8.
Development of galactomannan hydrolyzing activity was followed in seeds of tomato [ Lycopersicon esculentum (L.) Mill. cv. Toyonishiki] during priming and germination. The activity developed in seeds that were being primed in polyethylene glycol (-0.8 MPa). The activity was detected exclusively in the endosperm portion just adjacent to the radicle tip. Part of the activity remained active after desiccation of the primed seeds. After transfer to water, the activity in the primed seeds immediately began to increase, while in unprimed seeds the beginning of the increase in activity was delayed by about 1 day. In scanning electron microscopy, the inner surface of the cell walls of the micropylar endosperm portion appeared eroded in primed seeds that had been imbibed in water for 16 h (before germination), but not in unprimed seeds imbibed for the same period. These results support the hypothesis that galactomannan hydrolyzing enzyme, which is believed to be responsible for breakdown of tomato endosperm cell walls and hence for the weakening of mechanical restraint against radicle growth, may be involved in the improved germination of primed tomato seeds.  相似文献   

9.
Development of galactomannan-hydrolyzing activity, that is involved in the weakening of the mechanical restraint of the endosperm, was followed at pre-germinative stages in tomato ( Lycopersicon esculentum ) seed. Prior to germination the activity developed exclusively in the endosperm portion just adjacent to the radicle tip. In other parts of the endosperm, the activity developed only after germination occurred. Under the conditions where germination was suppressed (far-red light- or ABA-treatment). no activity was detected in the endosperm at the pre-germinative stages. Under the conditions where the inhibition of germination was alleviated (far-red + red or ABA + GA3), the activity developed prior to germination in the endosperm part in front of the radicle tip. Thus, a clear parallel relationship was observed between germinability of the seed and the pre-germinative development of activity in the part of the endosperm portion adjacent to the radicle tip.  相似文献   

10.
The effect of salt stress on proline (Pro) accumulation and its relationship with the changes occurring at the level of polyamine (PA) metabolism and tyramine were investigated in leaf discs of tomato (Lycopersicon esculentum). The rate of accumulation of Pro, PA and tyramine was higher in the salt-sensitive than in the salt-tolerant cultivar. In the salt-sensitive cultivar, Pro started to accumulate 4 h after the onset of the NaCl treatment, its maximum level being reached 27 h later. The lag phase was associated with a rapid decrease in putrescine (Put) and spermidine (Spd) and some increase in 1,3-diaminopropane (Dap), a product of Spd and/or spermine (Spm) oxidation. This was followed by an increase in agmatine (Agm), cadaverine (Cad), Spm and tyramine. α-DL-difluoromethylarginine (DFMA), an inhibitor of arginine decarboxylase (ADC, EC 4.1.1.19), induced a decrease in the Put level in both control and stressed discs, while α-DL-difluoromethylomithine (DFMO), an inhibitor of ornithine decarboxylase (ODC, EC 4.1.1.17), caused a decrease in Spd and Spm levels only in salinized discs. These data suggest that ADC is operating under both control and stress conditions, whereas ODC activity is promoted only in response to salt stress. DFMA also depressed the salt-induced Pro accumulation while DFMO did not inhibit this response. In salt-stressed leaf discs, the decrease in Spd level in response to methylglyoxal-bis-(guanylhydrazone) (MGBG) or cyclohexylammonium (CHA) treatment suggests that salt stress did not block SAM decarboxylase or Spd synthase activities. However, the increased level of Dap reflected a salt stress-promoted oxidation of PA. CHA and MGBG had no effect on Pro accumulation. Putrescine, Dap and especially tyramine supplied at low concentrations stimulated the Pro response which was, however, suppressed by application of Spm. Treatment with aminoguanidine, an inhibitor of diamine oxidases, also strongly inhibited Pro accumulation. These data suggest that salt-induced Pro accumulation in tomato leaf discs is closely related to changes in their PA metabolism, either via substrate-product relationships or regulatory effects at target(s) which remain to be characterized.  相似文献   

11.
Multiple forms of ADP-glucose pyrophosphorylase from tomato fruit.   总被引:3,自引:0,他引:3       下载免费PDF全文
B Y Chen  H W Janes 《Plant physiology》1997,113(1):235-241
ADP-glucose pyrophosphorylase (AGP) was purified from tomato (Lycopersicon esculentum Mill.) fruit to apparent homogeneity. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis the enzyme migrated as two close bands with molecular weights of 50,000 and 51,000. Two-dimensional polyacrylamide gel electrophoresis analysis of the purified enzyme, however, revealed at least five major protein spots that could be distinguished by their slight differences in net charge and molecular weight. Whereas all of the spots were recognized by the antiserum raised against tomato fruit AGP holoenzyme, only three of them reacted strongly with antiserum raised against the potato tuber AGP large subunit, and the other two spots (with lower molecular weights) reacted specifically with antisera raised against spinach leaf AGP holoenzyme and the potato tuber AGP small subunit. The results suggest the existence of at least three isoforms of the AGP large subunit and two isoforms of the small subunit in tomato fruit in vivo. The native molecular mass of the enzyme determined by gel filtration was 220 +/- 10 kD, indicating a tetrameric structure for AGP from tomato fruit. The purified enzyme is very sensitive to 3-phosphoglycerate/inorganic phosphate regulation.  相似文献   

12.
13.
Abstract. Two size ranges of oligosaccharide elicitors of pectic origin have been investigated for their effects on tomato plants. Both size ranges, with degrees of polymerization of 1–7 and 10–20 respectively, induced the accumulation of proteinase inhibitor (PI) activity in excised plants, and also induced changes in membrane potential of leaf mesophyll cells. The depolarizations were substantial, rapid, and reversible on removal of the elicitors. The effects are discussed in the context of early events in the signal transduction pathway linking oligosaccharides to changes in PI gene expression.  相似文献   

14.
The uptake of radioactive glucose and sucrose by protoplasts isolated from pericarp and placenta tissues of tomato ( Lycopersicon esculentum cv. Counter) fruit was investigated in relation to the dry matter accumulation rates of these tissues. Uptake of glucose by protoplasts isolated from pericarp tissue was highest in fruit of around 20 g fresh weight or 25 days after anthesis. Sucrose uptake by pericarp protoplasts was lower than that of glucose and did not show a peak of uptake. The maximum rate of glucose uptake by protoplasts from the pericarp was at the time when the tomato fruit was accumulating dry matter at the highest rate. Glucose uptake by placenta protoplasts was lower and at a similar level as sucrose.
Protoplast uptake of glucose, but not of sucrose, was partially inhibited by (1) p -chloromercuribenzene sulphonic acid, a sulphydryl group modifier; (2) erythrosin B, an H+-ATPase inhibitor; and (3) valinomycin, a K+-ionophore, suggesting that membrane transport of glucose by tomato fruit sink cells may be a carrier-mediated, energy-dependent process.
The main route of carbohydrate accumulation by tomato fruit during the period of rapid fruit growth may be by cleavage of sucrose by apoplastic acid invertase prior to hexose transport across the plasma membrane.  相似文献   

15.
Electron microscopic observations of the endosperm of tomato ( Lycopersicon esculentum Mill.) seeds revealed that changes in the cell wall structures along with the vacuolation of protein bodies occurred in the micropylar portion of the endosperm prior to germination. No changes were detected at that time in the rest of the endosperm. Endo‐β‐mannanase activity was restricted to the micropylar region of the endosperm prior to germination. Cell wall digestion by this pregerminative mannanase seemed to be associated with the changes in cell wall structures occurring in the micropylar region prior to germination. The protein content in the micropylar part of the endosperm began to decrease shortly after imbibition and attained about 40% of the initial level by the time of radicle protrusion (38 h after imbibition). On the other hand, only slight changes in the content were detected in the lateral endosperm during the same time; the protein content in the lateral endosperm decreased only after germination started. In conformity with the results on protein contents, proteolytic activity began to develop first in the micropylar portion prior to germination, and then in the lateral portion after germination. Thus, the timing of the biochemical activation of the endosperm after imbibition differed between the micropylar and the lateral region. Some qualitative differences in patterns of polypeptides synthesized in vivo were detected, as analyzed by pulse‐labeling and fluorography, between the micropylar and the lateral portions of the endosperm of seeds imbibed for 25 h. This suggests that processes of the biochemical activation of the endosperm may be qualitatively, as well as quantitatively, different depending on the regions of the endosperm.  相似文献   

16.
Three forms of galactomannan-hydrolyzing enzymes (dyed galactomannan as substrate) were partially purified from germinated tomato [ Lycopersicon esculentum (L.) Mill.] seed. Two of the enzymes were of the same molecular mass, 38 kDa, as judged by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE), but the points of elution from a CM-Toyopearl column by a pH-gradient were different between the two (pH 5.15 and 5.45. respectively). The molecular mass of the third form was slightly less (37.5 kDa) than that of the other two. These 3 enzymes showed no α-galactosidase (EC 3.2.1.22) or β-mannosidase (EC 3.2.1.25) activity. Thin-layer chromatography (TLC) revealed that the products of the reaction were oligosaccharides and that free galactose and mannose were not released. These results indicate that the 3 galactomannan-hydrolyzing enzymes are endo-β-mannanases (EC 3.2.1.78). Polyclonal antibodies raised against the 37.5-kDa polypeptide cross-reacted with the two 38-kDa polypeptides, indicating that the 3 endo-β-mannanases are immunologically homologous. Activity staining and immunoblotting of native PAGE of endosperm extracts revealed that only two (38-kDa. elution point pH 5.15 and 37.5-kDa proteins) of the 3 forms were major endo-β-mannanases present in the endosperm of germinated tomato seeds.  相似文献   

17.
18.
Wild‐type and ACC‐oxidase antisense tomato plants ( Lycopersicon esculentum Mill. cv. Ailsa Craig and pTOM13) were grown in environment‐controlled rooms for 21 days under photoperiods of 8, 16 or 23.5 h at an irradiance of 300 µmol m−2 s−1. Photosynthetic pigments, photosynthesis, soluble carbohydrates, starch and ethylene were measured on the last fully expanded leaf. Increasing the photoperiod from 8 to 16 h stimulated all measured growth parameters in both cultivars. However, when the photoperiod was increased to 23.5 h, foliar yellowing and deformation were observed in the wild‐type Ailsa Craig whereas no change was observed in pTOM13. It was not possible to relate these foliar changes in Ailsa Craig to destruction of the photosynthetic apparatus by excess carbohydrate levels in the leaves. Because pTOM13 was antisense to ACC‐oxidase. it is proposed that yellowing and deformation in leaves of wild‐type tomato plants grown under long photoperiods may be caused by stress ethylene induced by a long photoperiod.  相似文献   

19.
The uptake of 3H-leucine by leaf fragments of Lycopersicon esculentum Mill. cv. Rutgers and L. hirsutum Humb. & Bonpl., a wild tomato, was studied. Two altitudinal races of L. hirsutum were used which differed in chilling tolerance. The temperature dependence of uptake was initially similar for all plant varieties. However, at temperatures below about 11°C, uptake progressively decreased in the more chilling-sensitive varieties ( L. esculentum , Low-altitude L. hirsutum ), but not in the more chilling-tolerant (high-altitude L. hirsutum ) with increasing preincubation time. More than 60 min preincubation was required for this effect, and it was greatest at the lower temperatures. When leaf fragments, chilled for short periods of time (>22 h), were returned to 22°C, initial rates of uptake were recovered within 2 h. The relationship between membrane lipid changes and membrane protein activity under chill stress is discussed.  相似文献   

20.
Agrobacterium tumefaciens strain LBA4404 carrying a binary vector pTOK233, which contained the GUS reporter gene and a kanamycin-resistance gene nptII, was employed for optimizing the transformation efficiency evaluated by a GUS gene transient expression level. Eight factors including explant types, explant size and source, the concentration of cytokinin, inoculation time, pH of inoculation and cocultivation media, bacterial concentration, acetosyringone concentration, and cocultivation duration were investigated in detail. This optimized protocol was then adopted to obtain transgenic tomato plants resistant to cucumber mosaic virus (CMV) mediated by Agrobacterium tumefaciens, strain LBA4404, carrying a binary vector pR-ΔGDD containing the kanamy cin-resistance gene and CMV replicase gene with GDD deletion. The presence of the CMV-RNA2 gene was confirmed by genomic DNA Southern blot analysis in all transformants analyzed. Field spray test showed that the transgenic tomato plants were resistant to 100 mg/l kanamycin. Published in Russian in Fiziologiya Rastenii, 2006, Vol. 53, No. 2, pp. 280–284. The text was submitted by the authors in English.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号