首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BphF is a small, soluble, Rieske-type ferredoxin involved in the microbial degradation of biphenyl. The rapid, anaerobic purification of a heterologously expressed, his-tagged BphF yielded 15 mg of highly homogeneous recombinant protein, rcBphF, per liter of cell culture. The reduction potential of rcBphF, determined using a highly oriented pyrolytic graphite (HOPG) electrode, was -157+/- 2 mV vs the standard hydrogen electrode (SHE) (20 mM MOPS, 80 mM KCl, and 1 mM dithiothreitol, pH 7.0, 22 degrees C). The electron paramagnetic resonance spectrum of the reduced rcBphF is typical of a Rieske cluster while the close similarity of the circular dichroic (CD) spectra of rcBphF and BedB, a homologous protein from the benzene dioxygenase system, indicates that the environment of the cluster is highly conserved in these two proteins. The reduction potential and CD spectra of rcBphF were relatively independent of pH between 5 and 10, indicating that the pK(a)s of the cluster's histidinyl ligands are not within this range. Gel filtration studies demonstrated that rcBphF readily oligomerizes in solution. Crystals of rcBphF were obtained using sodium formate or poly(ethylene glycol) (PEG) as the major precipitant. Analysis of the intermolecular contacts in the crystal revealed a head-to-tail interaction that occludes the cluster, but is very unlikely to be found in solution. Oligomerization of rcBphF in solution was reversed by the addition of dithiothreitol and is unrelated to the noncovalent crystallographic interactions. Moreover, the oligomerization state of rcBphF did not influence the latter's reduction potential. These results indicate that the 450 mV spread in reduction potential of Rieske clusters of dioxygenase-associated ferredoxins and mitochondrial bc(1) complexes is not due to significant differences in their solvent exposure.  相似文献   

2.
Optimized plant-microbe bioremediation processes in which the plant initiates the metabolism of xenobiotics and releases the metabolites in the rhizosphere to be further degraded by the rhizobacteria is a promising alternative to restore contaminated sites in situ. However, such processes require that plants produce the metabolites that bacteria can readily oxidize. The biphenyl dioxygenase is the first enzyme of the bacterial catabolic pathway involved in the degradation of polychlorinated biphenyls. This enzyme consists of three components: the two sub-unit oxygenase (BphAE) containing a Rieske-type iron-sulfur cluster and a mononuclear iron center, the Rieske-type ferredoxin (BphF), and the FAD-containing ferredoxin reductase (BphG). In this work, based on analyses with Nicotiana benthamiana plants transiently expressing the biphenyl dioxygenase genes from Burkholderia xenovorans LB400 and transgenic Nicotiana tabacum plants transformed with each of these four genes, we have shown that each of the three biphenyl dioxygenase components can be produced individually as active protein in tobacco plants. Therefore, when BphAE, BphF, and BphG purified from plant were used to catalyze the oxygenation of 4-chlorobiphenyl, detectable amounts of 2,3-dihydro-2, 3-dihydroxy-4'-chlorobiphenyl were produced. This suggests that creating transgenic plants expressing simultaneously all four genes required to produce active biphenyl dioxygenase is feasible.  相似文献   

3.
Elsen NL  Moe LA  McMartin LA  Fox BG 《Biochemistry》2007,46(4):976-986
Toluene 4-monooxygenase catalyzes the NADH- and O2-dependent hydroxylation of toluene to form p-cresol. The four-protein complex consists of a diiron hydroxylase, an oxidoreductase, a catalytic effector protein, and a Rieske-type ferredoxin (T4moC). Phylogenetic analysis suggests that T4moC is part of a clade specialized for reaction with diiron hydroxylases, possibly reflected in the conservation of W69, whose indole side chain makes close contacts with a bridging sulfide. In order to further investigate the possible origins of this specialization, T4moC, mutated variants of T4moC, and three other purified ferredoxins (the Thermus Rieske protein, the Burkholderia cepacia Rieske-type biphenyl dioxygenase ferredoxin BphF, and the Ralstonia pickettii PK01 toluene monooxygenase TbuB, the Rieske-type ferredoxin from another diiron monooxygenase complex) were studied by redox potential measurements and their ability to complement the catalytic function of the reconstituted toluene 4-monooxygenase complex. A saturation mutagenesis of T4moC W69 indicates that an aromatic residue may modulate the redox potential and is also necessary for activity and/or stability. The redox potential of T4moC was determined to be -173 mV, W69F T4moC was -139 mV, and TbuB was -150 mV. For comparison, BphF had a redox potential of -157 mV [Couture et al. (2001) Biochemistry 40, 84-92]. Of these ferredoxins, all except BphF were able to provide catalytic activity. Given the range in redox potentials observed in the active ferredoxins, shape and electrostatics are strongly implicated in the catalytic specialization. Mutagenesis of other T4moC surface residues gave further insight into possible origins of catalytic specialization. Thus R65A T4moC gave an alteration in apparent KM only, while D82A/D83A T4moC gave alterations in both apparent kcat and KM. Since the different catalytic results were obtained by mutagenesis of residues lying on different sides of the protein adjacent to the [2Fe-2S] cluster, the results suggest that two different faces of T4moC may be involved in protein-protein interactions during catalysis.  相似文献   

4.
5.
6.
The first step in the degradation of dibenzofuran and dibenzo-p-dioxin by Sphingomonas sp. strain RW1 is carried out by dioxin dioxygenase (DxnA1A2), a ring-dihydroxylating enzyme. An open reading frame (fdx3) that could potentially specify a new ferredoxin has been identified downstream of dxnA1A2, a two-cistron gene (J. Armengaud, B. Happe, and K. N. Timmis, J. Bacteriol. 180:3954-3966, 1998). In the present study, we report a biochemical analysis of Fdx3 produced in Escherichia coli. This third ferredoxin thus far identified in Sphingomonas sp. strain RW1 contained a putidaredoxin-type [2Fe-2S] cluster which was characterized by UV-visible absorption spectrophotometry and electron paramagnetic resonance spectroscopy. The midpoint redox potential of this ferredoxin (E'(0) = -247 +/- 10 mV versus normal hydrogen electrode at pH 8.0) is similar to that exhibited by Fdx1 (-245 mV), a homologous ferredoxin previously characterized in Sphingomonas sp. strain RW1. In in vitro assays, Fdx3 can be reduced by RedA2 (a reductase similar to class I cytochrome P-450 reductases), previously isolated from Sphingomonas sp. strain RW1. RedA2 exhibits a K(m) value of 3.2 +/- 0.3 microM for Fdx3. In vivo coexpression of fdx3 and redA2 with dxnA1A2 confirmed that Fdx3 can serve as an electron donor for the dioxin dioxygenase.  相似文献   

7.
The protein components of the 2-nitrotoluene (2NT) and nitrobenzene dioxygenase enzyme systems from Acidovorax sp. strain JS42 and Comamonas sp. strain JS765, respectively, were purified and characterized. These enzymes catalyze the initial step in the degradation of 2-nitrotoluene and nitrobenzene. The identical shared reductase and ferredoxin components were monomers of 35 and 11.5 kDa, respectively. The reductase component contained 1.86 g-atoms iron, 2.01 g-atoms sulfur, and one molecule of flavin adenine dinucleotide per monomer. Spectral properties of the reductase indicated the presence of a plant-type [2Fe-2S] center and a flavin. The reductase catalyzed the reduction of cytochrome c, ferricyanide, and 2,6-dichlorophenol indophenol. The ferredoxin contained 2.20 g-atoms iron and 1.99 g-atoms sulfur per monomer and had spectral properties indicative of a Rieske [2Fe-2S] center. The ferredoxin component could be effectively replaced by the ferredoxin from the Pseudomonas sp. strain NCIB 9816-4 naphthalene dioxygenase system but not by that from the Burkholderia sp. strain LB400 biphenyl or Pseudomonas putida F1 toluene dioxygenase system. The oxygenases from the 2-nitrotoluene and nitrobenzene dioxygenase systems each had spectral properties indicating the presence of a Rieske [2Fe-2S] center, and the subunit composition of each oxygenase was an alpha(3)beta(3) hexamer. The apparent K(m) of 2-nitrotoluene dioxygenase for 2NT was 20 muM, and that for naphthalene was 121 muM. The specificity constants were 7.0 muM(-1) min(-1) for 2NT and 1.2 muM(-1) min(-1) for naphthalene, indicating that the enzyme is more efficient with 2NT as a substrate. Diffraction-quality crystals of the two oxygenases were obtained.  相似文献   

8.
Engineering of hybrid gene clusters between the toluene metabolic tod operon and the biphenyl metabolic bph operon greatly enhanced the rate of biodegradation of trichloroethylene. Escherichia coli cells carrying a hybrid gene cluster composed of todC1 (the gene encoding the large subunit of toluene terminal dioxygenase in Pseudomonas putida F1), bphA2 (the gene encoding the small subunit of biphenyl terminal dioxygenase in Pseudomonas pseudoalcaligenes KF707), bphA3 (the gene encoding ferredoxin in KF707), and bphA4 (the gene encoding ferredoxin reductase in KF707) degraded trichloroethylene much faster than E. coli cells carrying the original toluene dioxygenase genes (todC1C2BA) or the original biphenyl dioxygenase genes (bphA1A2A3A4).  相似文献   

9.
The three-component toluene dioxygenase system consists of an FAD-containing reductase, a Rieske-type [2Fe-2S] ferredoxin, and a Rieske-type dioxygenase. The task of the FAD-containing reductase is to shuttle electrons from NADH to the ferredoxin, a reaction the enzyme has to catalyze in the presence of dioxygen. We investigated the kinetics of the reductase in the reductive and oxidative half-reaction and detected a stable charge transfer complex between the reduced reductase and NAD+ at the end of the reductive half-reaction, which is substantially less reactive toward dioxygen than the reduced reductase in the absence of NAD+. A plausible reason for the low reactivity toward dioxygen is revealed by the crystal structure of the complex between NAD+ and reduced reductase, which shows that the nicotinamide ring and the protein matrix shield the reactive C4a position of the isoalloxazine ring and force the tricycle into an atypical planar conformation, both factors disfavoring the reaction of the reduced flavin with dioxygen. A rapid electron transfer from the charge transfer complex to electron acceptors further reduces the risk of unwanted side reactions, and the crystal structure of a complex between the reductase and its cognate ferredoxin shows a short distance between the electron-donating and -accepting cofactors. Attraction between the two proteins is likely mediated by opposite charges at one large patch of the complex interface. The stability, specificity, and reactivity of the observed charge transfer and electron transfer complexes are thought to prevent the reaction of reductaseTOL with dioxygen and thus present a solution toward conflicting requirements.  相似文献   

10.
Benzene dioxygenase from Pseudomonas putida comprises three components, namely a flavoprotein (NADH:ferredoxin oxidoreductase; Mr 81000), an intermediate electron-transfer protein, or ferredoxin (Mr 12000) with a [2Fe-2S] cluster, and a terminal dioxygenase containing two [2Fe-2S] iron-sulphur clusters (Mr 215000), which requires two additional Fe2+ atoms/molecule for oxygenase activity. The ferredoxin and the dioxygenase give e.s.r. signals in the reduced state with rhombic symmetry and average g values of 1.92 and 1.896 respectively. The mid-point redox potentials were determined by e.s.r. titration at pH 7.0 to be -155 mV and -112 mV respectively. The signal from the dioxygenase shows pronounced g anisotropy and most closely resembles those of 4-methoxybenzoate mono-oxygenase from Pseudomonas putida and the [2Fe-2S] 'Rieske' proteins of the quinone-cytochrome c region of electron-transport chains of respiration and photosynthesis.  相似文献   

11.
We engineered biphenyl-degrading Alcaligenes sp. strain KF711 for total degradation of pentachloroethane (PCA), which expresses a modified camphor monooxygenase and a hybrid dioxygenase consisting of TodC1 (a large subunit of toluene dioxygenase of Pseudomonas putida F1) and BphA2-BphA3-pbhA4 (a small subunit, ferredoxin and ferredoxin reductase of biphenyl dioxygenase, respectively, in strain KF707). Modified camphor monooxygenase genes (camCAB) were supplied as a plasmid and the todC1 gene was integrated within the chromosomal bph gene cluster by a single crossover recombination. The resultant strain KF711S-3cam dechlorinated PCA to trichloroethene by the action of the modified camphor monooxygenase under anaerobic conditions. The same strain subsequently degraded trichloroethene formed oxidatively by the action of the Tol-Bph hybrid dioxygenase under aerobic conditions. Thus sequential anaerobic and aerobic treatments of the KF711S-3cam resting cells resulted in efficient and total degradation of PCA.  相似文献   

12.
We heterologously overproduced a hyperthermostable archaeal low potential (E(m) = -62 mV) Rieske-type ferredoxin (ARF) from Sulfolobus solfataricus strain P-1 and its variants in Escherichia coli to examine the influence of ligand substitutions on the properties of the [2Fe-2S] cluster. While two cysteine ligand residues (Cys(42) and Cys(61)) are essential for the cluster assembly and/or stability, the contributions of the two histidine ligands to the cluster assembly in the archaeal Rieske-type ferredoxin appear to be inequivalent as indicated by much higher stability of the His(64) --> Cys variant (H64C) than the His(44) --> Cys variant (H44C). The x-ray absorption and resonance Raman spectra of the H64C variant firmly established the formation of a novel, oxidized [2Fe-2S] cluster with one histidine and three cysteine ligands in the archaeal Rieske-type protein moiety. Comparative resonance Raman features of the wild-type, natural abundance and uniformly (15)N-labeled ARF and its H64C variant showed significant mixing of the Fe-S and Fe-N stretching characters for an oxidized biological [2Fe-2S] cluster with partial histidine ligation.  相似文献   

13.
A soluble F(1)-ATPase was isolated from the mitochondria of crayfish (Orconectes virilis) gill tissue. The maximal mitochondrial disruption rate (95%) was obtained by sonicating for 4 min at pH 8.6. A 15-fold purification was estimated. The properties for both soluble and membrane-bound enzyme were studied. Both enzyme forms were stable at 4 to -70 degrees C when kept in 20% glycerol. Soluble F(1)-ATPase was more stable at room temperature than membrane-bound enzyme. It displayed a narrower pH profile (pK(1) =6.58, pK(2)=7.68) and more acid pH optimum (7.13) than membrane-bound enzyme (pK(1)=6.42, pK(2)=8.55, optimum pH 7.49). The anion-stimulated activities were in the order HCO(3)(-)>SO(4)(2-)>Cl(-). The apparent K(a) values for soluble enzyme were 11.4, 11.2, and 10.9 mM, respectively, but the K(a) of HCO(3)(-) for membrane-bound enzyme (14.9 mM) was higher than for soluble enzyme. Oligomycin and DCCD inhibited membrane-bound F(1)-ATPase with I(50) of 18.6 ng/ml and 2.2 microM, respectively, but were ineffective in inhibiting soluble enzyme. Both enzyme forms shared identical sensitivity to DIDS (I(50)=12.5 microM) and vanadate (I(50)=9.0 mM). Soluble ATPase was significantly more sensitive to pCMB (I(50)=0.15 microM) and NO(3)(-) (I(50)=28.6 mM) than membrane-bound enzyme (I(50)=1.04 microM pCMB and 81.5 mM NO(3)(-)). In addition, soluble F(1)-ATPase was slightly more sensitive to azide (I(50)=91.8 microM) and NBD-Cl (I(50)=9.18 microM) than membrane-bound enzyme (I(50)=111.6 microM azide and 12.88 microM NBD-Cl). These data suggest a conformational change transmission between F(0) and F(1) sectors and slight conformational differences between soluble F(1) and membrane-bound F(1). In addition, an unmodified F(0) stabilizes F(1) and decreases F(1) sensitivities to inhibitors and modulators.  相似文献   

14.
The first step in the degradation of 3-nitrotoluene by Diaphorobacter sp. strain DS2 is the dihydroxylation of the benzene ring with the concomitant removal of nitro group. This is catalyzed by a dioxygenase enzyme system. We report here the cloning and sequencing of the complete dioxygenase gene with its putative regulatory sequence from the genomic DNA of Diaphorobacter sp. strains DS1, DS2 and DS3. Analysis of the 5 kb DNA stretch that was cloned, revealed five complete open reading frames (ORFs) encoding for a reductase, a ferredoxin and two dioxygenase subunits with predicted molecular weights (MW) of 35, 12, 50 and 23 kDa respectively. A regulatory protein was also divergently transcribed from the reductase subunit and has a predicated MW of 34 kDa. Presence of parts of two functional ORFs in between the reductase and the ferredoxin subunits reveals an evolutionary route from a naphthalene dioxygenase like system of Ralstonia sp. strain U2. Further a 100 % identity of its ferredoxin subunit reveals its evolution via dinitrotoluene dioxygenase like system present in Burkholderia cepacia strain R34. A modeled structure of oxygenase3NT from strain DS2 was generated using nitrobenzene dioxygenase as a template. The modeled structure only showed minor changes at its active site. Comparison of growth patterns of strains DS1, DS2 and DS3 revealed that Diaphorobacter sp. strain DS1 has been evolved to degrade 4-nitrotoluene better by an oxidative route amongst all three strains.  相似文献   

15.
Methylosulfonomonas methylovora M2 is an unusual gram-negative methylotrophic bacterium that can grow on methanesulfonic acid (MSA) as the sole source of carbon and energy. Oxidation of MSA by this bacterium is carried out by a multicomponent MSA monooxygenase (MSAMO). Cloning and sequencing of a 7.5-kbp SphI fragment of chromosomal DNA revealed four tightly linked genes encoding this novel monooxygenase. Analysis of the deduced MSAMO polypeptide sequences indicated that the enzyme contains a two-component hydroxylase of the mononuclear-iron-center type. The large subunit of the hydroxylase, MsmA (48 kDa), contains a typical Rieske-type [2Fe-2S] center with an unusual iron-binding motif and, together with the small subunit of the hydroxylase, MsmB (20 kDa), showed a high degree of identity with a number of dioxygenase enzymes. However, the other components of the MSAMO, MsmC, the ferredoxin component, and MsmD, the reductase, more closely resemble those found in other classes of oxygenases. MsmC has a high degree of identity to ferredoxins from toluene and methane monooxygenases, which are enzymes characterized by possessing hydroxylases containing mu-oxo bridge binuclear iron centers. MsmD is a reductase of 38 kDa with a typical chloroplast-like [2Fe-2S] center and conserved flavin adenine dinucleotide- and NAD-binding motifs and is similar to a number of mono- and dioxygenase reductase components. Preliminary analysis of the genes encoding MSAMO from a marine MSA-degrading bacterium, Marinosulfonomonas methylotropha, revealed the presence of msm genes highly related to those found in Methylosulfonomonas, suggesting that MSAMO is a novel type of oxygenase that may be conserved in all MSA-utilizing bacteria.  相似文献   

16.
The Rieske iron-sulfur proteins have reduction potentials ranging from -150 to +400 mV. This enormous range of potentials was first proposed to be due to differing solvent exposure or even protein structure. However, the increasing number of available crystal structures for Rieske iron-sulfur proteins has shown this not to be the case. Colbert and colleagues proposed in 2000 that differences in the electrostatic environment, and not structural differences, of a Rieske proteins are responsible for the wide range of reduction potentials observed. Using computational simulation methods and the newly determined structure of Pseudomonas sp. NCIB 9816-4 naphthalene dioxygenase Rieske ferredoxin (NDO-F9816-4), we have developed a model to predict the reduction potential of Rieske proteins given only their crystal structure. The reduction potential of NDO-F9816-4, determined using a highly oriented pyrolytic graphite electrode, was -150+/-2 mV versus the standard hydrogen electrode. The predicted reduction potentials correlate well with experimentally determined potentials. Given this model, the effect of protein mutations can be evaluated. Our results suggest that the reduction potential of new proteins can be estimated with good confidence from 3D structures of proteins. The structure of NDO-F9816-4 is the most basic Rieske ferredoxin structure determined to date. Thus, the contributions of additional structural motifs and their effects on reduction potential can be compared with respect to this base structure.  相似文献   

17.
The benzene dioxygenase from Pseudomonas putida ML2 is a multicomponent complex comprising a flavoprotein reductase, a ferredoxin, and a terminal iron-sulfur protein (ISP). The catalytic activity of the isolated complex shows a nonlinear relationship with protein concentration in cell extracts, with the limiting factor for activity in vitro being ferredoxin(BED). The relative levels of the three components were analyzed by using 125I-labelled antibodies, and the functional molar ratio of ISP(BED), ferredoxin(BED), and reductase(BED) was shown to be 1:0.9:0.8, respectively. The concentration of ferredoxin(BED) was confirmed by quantitative electron paramagnetic resonance spectroscopy of the 2Fe-2S centers in ferredoxin(BED) and ISP(BED) of whole cells. These results demonstrate that the ferredoxin(BED) component is a limiting factor in dioxygenase activity in vitro. To determine if it is a limiting factor in vivo, a plasmid (pJRM606) overproducing ferredoxin(BED) was introduced into P. putida ML2. The benzene dioxygenase activity of this strain, measured in cell extracts, was fivefold greater than in the wild type, and the activity was linear with protein concentration in cell extracts above 2 mg/ml. Western blotting (immunoblotting) and electron paramagnetic resonance spectroscopic analysis confirmed an elevated level of ferredoxin(BED) protein and active redox centers in the recombinant strain. However, in these cells, the increased level of ferredoxin(BED) had no effect on the overall rate of benzene oxidation by whole cells. Thus, we conclude that ferredoxin(BED) is not limiting at the high intracellular concentration (0.48 mM) found in cells.  相似文献   

18.
Tarasev M  Ballou DP 《Biochemistry》2005,44(16):6197-6207
The phthalate dioxygenase system, a Rieske non-heme iron dioxygenase, catalyzes the dihydroxylation of phthalate to form the 4,5-dihydro-cis-dihydrodiol of phthalate (DHD). It has two components: phthalate dioxygenase (PDO), a multimer with one Rieske-type [2Fe-2S] and one mononuclear Fe(II) center per monomer, and a reductase (PDR) that contains flavin mononucleotide (FMN) and a plant-type ferredoxin [2Fe-2S] center. This work shows that product formation in steady-state reactions is tightly coupled to electron delivery, with 1 dihydrodiol (DHD) of phthalate formed for every 2 electrons delivered from NADH. However, in reactions of reduced PDO with O(2), only about 0.5 DHD is formed per Rieske center that becomes oxidized. Although the product forms rapidly, its release from PDO is slow in these reactions with oxygen that do not include reductase and NADH. EPR data show that, at the completion of the oxidation, iron in the mononuclear center remains in the ferrous state. In contrast, naphthalene dioxygenase (NDO) [Wolfe, M. D., Parales, J. V., Gibson, D. T., and Lipscomb, J. D. (2001) J. Biol. Chem. 276, 1945-1953] and benzoate dioxygenase (BZDO) [Wolfe, M. D., Altier, D. J., Stubna, A., Popescu, C. V., Munck, E., and Lipscomb, J. D. (2002) Biochemistry, 41, 9611-9626], related Rieske non-heme iron dioxygenases, form 1 DHD per Rieske center oxidized, and the mononuclear center iron ends up ferric. Thus, both electrons from reduced NDO and BZDO monomers are used to form the product, whereas only the reduced Rieske centers in PDO become oxidized during production of DHD. This emphasizes the importance of PDO subunit interaction in catalysis. Electron redistribution was practically unaffected by the presence of oxidized PDR. A scheme is presented that emphasizes some of the differences in the mechanisms involved in substrate hydroxylation employed by PDO and either NDO or BZDO.  相似文献   

19.
Bacterial strain Rhodococcus erythropolis K2-3 can cleave theether bond of the phenoxybutyrate herbicides, i.e., 4-(2,4-dichlorophenoxy)butyrate(2,4-DB) and 4-(4-chloro-2-methylphenoxy)butyrate (MCPB), by anenzyme system that is constitutively expressed. The enzyme(s) involved were investigated in this study. The rate ofdisappearance of 2,4-DB determined in a whole cell assay amounted to0.6 mmol/h ¶ gdry mass.Carbon monoxide difference spectra of dithionite-reduced wholecells and crude cell extracts suggested that strain K2-3 contains a soluble cytochrome P450(P450), named P450PB-1. The addition of various phenoxybutyrate substrates to crude cell extracts resulted in typical difference spectra following the type I pattern ofsubstrate binding with P450. The rate of 2,4-DB cleavage was reduced by inhibitors of P450: 5 mM metyrapone and carbon monoxide at a CO/O2 ratio of 10 reduced the activity by about 20%, and 70%, respectively. The ether cleaving activity completely disappearedafter disruption of the cells and could not be detected in crude extracts. To elucidate theenzymatic basis of this reaction, P450 was partially purified. With the resulting enzyme preparation,2,4-DB cleavage activity was re-established, becoming measurable after the addition of eitherphenazine methosulfate or ferredoxin and ferredoxin/NADP oxidoreductase from spinach. We detected no activities attributable to -ketoglutarate-dependent dioxygenase orNAD(P)H-dependent monooxygenase. These results collectively indicatethat cleavage of the ether bond of phenoxybutyrate herbicides is catalyzed by P450-mediated activityin this strain. One of the products derived from this reaction is dichlorophenol, and comparativechromatographic analyses suggest that the other product is a C4-carbonicacid, most likely succinic semialdehyde/succinate.  相似文献   

20.
Oxidative biodegradation of aromatic compounds by bacteria usually begins with hydroxylation of the aromatic ring by multi-component dioxygenases like benzene dioxygenase, biphenyl dioxygenase, and others. These enzymes are composed of ferredoxin reductase, ferredoxin, and terminal oxygenase. Reducing equivalents that originate from NADH are transferred from ferredoxin reductase to ferredoxin and, in turn, to the terminal oxygenase, thus resulting in the activation of a dioxygen. BphA4 is the ferredoxin reductase component of biphenyl dioxygenase from Pseudomonas sp. strain KKS102. The amino acid sequence of BphA4 exhibits significant homology with the putidaredoxin reductase of the cytochrome P450cam system in Pseudomonas putida, as well as with various other oxygenase-coupled NADH-dependent ferredoxin reductases (ONFRs) of bacteria. To date, no structural information has been provided for the ferredoxin reductase component of the dioxygenase systems. In order to provide a structural basis for discussing the mechanism of electron transport between ferredoxin reductase and ferredoxin, crystal structures of BphA4 and its NADH complex were solved. The three-dimensional structure of BphA4 is different from those of ferredoxin reductases whose structures have already been determined, but adopts essentially the same fold as the enzymes of the glutathione reductase (GR) family. Also the three-dimensional structure of the first two domains of BphA4 adopts a fold similar to that of adrenodoxin reductase (AdR) in the mitochondrial cytochrome P450 system. Comparing the amino acid sequence with what is known of the three-dimensional structure of BphA4 strongly suggests that the other ONFRs have secondary structural features that are similar to that of BphA4. This analysis of the crystal structures of BphA4 suggests that Lys53 and Glu159 seem to be involved in the hydride transfer from NADH to FAD. Since the amino acid residues around the active site, some of which seem to be important to electron transport, are highly conserved among ONFRs, it is likely that the mechanism of electron transport of BphA4 is quite applicable to other ONFRs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号