首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dynamic shape   总被引:3,自引:0,他引:3  
  相似文献   

2.
3.
Bacterial shape   总被引:1,自引:0,他引:1  
In free-living eubacteria an external shell of peptidoglycan opposes internal hydrostatic pressure and prevents membrane rupture and death. At the same time, this wall imposes on each cell a shape. Because shape is both stable and heritable, as is the ability of many organisms to execute defined morphological transformations, cells must actively choose from among a large repertoire of available shapes. How they do so has been debated for decades, but recently experiment has begun to catch up with theory. Two discoveries are particularly informative. First, specific protein assemblies, nucleated by FtsZ, MreB or Mbl, appear to act as internal scaffolds that influence cell shape, perhaps by correctly localizing synthetic enzymes. Second, defects in cell shape are correlated with the presence of inappropriately placed, metabolically inert patches of peptidoglycan. When combined with what we know about mutants affecting cellular morphology, these observations suggest that bacteria may fabricate specific shapes by directing the synthesis of two kinds of cell wall: a long-lived, rigid framework that defines overall topology, and a metabolically plastic peptidoglycan whose shape is directed by internal scaffolds.  相似文献   

4.
Overview of cell shape: cytoskeletons shape bacterial cells   总被引:1,自引:0,他引:1  
An evolving hypothesis is that bacterial cell shape is determined by cytoskeletal elements that localize peptidoglycan synthetic machineries. In most bacteria FtsZ assembles into the Z ring which recruits the machinery necessary for cytokinesis. Most rod shaped cells require MreB which assembles into cables that run between the poles of the cell and distribute various components of peptidoglycan metabolism along the cell length. Cells with other shapes have additional cytoskeletal elements that either localize synthetic machineries or possibly influence their activity.  相似文献   

5.
Abstract

The present study proposes a computational method to identify the unloaded corneal shape based on the prescribed surface profile of the cornea acquired from in vivo measurements. Variational shape optimization of the unloaded corneal shape was formulated to satisfy that the corneal shape at the mechanical equilibrium state in the physiological situation corresponded to the prescribed surface profile. The shape variation was calculated using the Lagrange multiplier method with a finite element solution. Numerical solution showed that the optimized corneal shape was in excellent agreement with the prescribed surface profile of the cornea without μm-scale surface irregularities.  相似文献   

6.
Neurons take shape   总被引:1,自引:0,他引:1  
To construct the intricate network of connections that supports the functions of an adult nervous system, neurons must form highly elaborate processes, extending in the appropriate direction across long distances to form synapses with their partners. As the nervous system takes shape, the process of neuronal morphogenesis is controlled by a broad repertoire of cellular signals. These extracellular cues and cellular interactions are translated by receptors at the cell surface into physical forces that control the dynamic architecture of the neuron as it explores the surrounding terrain. The interpretation of these cues involves a large set of intracellular proteins, whose functional logic we are just beginning to appreciate. We shall consider the basic mechanics of neuronal morphogenesis and some of the emerging pathways that seem to link the outer and inner worlds of the neuron.  相似文献   

7.
8.
9.
10.
11.
12.
Ostry DJ  Romo R 《Neuron》2001,31(2):173-174
Neuroimaging techniques may aid in the identification of areas of the human brain that are involved in tactile shape perception. Bodeg?rd et al. (2001) relate differences in the properties of tactile stimuli to differences in areas of cortical activation to infer tactile processing in the somatosensory network.  相似文献   

13.
Bacterial species have long been classified on the basis of their characteristic cell shapes. Despite intensive research, the molecular mechanisms underlying the generation and maintenance of bacterial cell shape remain largely unresolved. The field has recently taken an important step forward with the discovery that eukaryotic cytoskeletal proteins have homologues in bacteria that affect cell shape. Here, we discuss how a bacterium gains and maintains its shape, the challenges still confronting us and emerging strategies for answering difficult questions in this rapidly evolving field.  相似文献   

14.
15.
16.
17.
18.
Development of leaf shape   总被引:4,自引:0,他引:4  
Variation among vascular plants in the initiation and patterning of leaves results in a diverse array of leaf shape, including the strap-like leaf of many grasses and the broad lamina of most eudicots. Recent findings highlight the importance of interactions between the shoot apical meristem (SAM) and developing leaf primordia in axis specification and the establishment of leaf shape. Global regulators of epigenetic states have been implicated in these interactions and may play a role in distinguishing founder cells and stem cells within the SAM.  相似文献   

19.
Although mitochondria are known to exhibit a wide variety of morphologies in different cells, the mechanism by which these shapes are established and regulated are largely unknown. Several potential shape-forming proteins have been recently identified. Some studies suggest that these proteins control shape by mediating attachment of mitochondria to the cytoskeleton, while other studies indicate that these proteins form part of a connection between the mitochondrial outer and inner membranes. Complicating matters, a recent study raises the possibility that one or more of these shape-forming proteins plays a direct role in the import and assembly of mitochondrial proteins synthesized in the cytosol.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号