首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wetlands are large carbon pools and play important roles in global carbon cycles as natural carbon sinks. This study analyzes the variation of total soil carbon with depth in two temperate (Ohio) and three tropical (humid and dry) wetlands in Costa Rica and compares their total soil C pool to determine C accumulation in wetland soils. The temperate wetlands had significantly greater (P < 0.01) C pools (17.6 kg C m−2) than did the wetlands located in tropical climates (9.7 kg C m−2) in the top 24 cm of soil. Carbon profiles showed a rapid decrease of concentrations with soil depth in the tropical sites, whereas in the temperate wetlands they tended to increase with depth, up to a maximum at 18–24 cm, after which they started decreasing. The two wetlands in Ohio had about ten times the mean total C concentration of adjacent upland soils (e.g., 161 g C kg−1 were measured in a central Ohio isolated forested wetland, and 17 g C kg−1 in an adjacent upland site), and their soil C pools were significantly higher (P < 0.01). Among the five wetland study sites, three main wetland types were identified – isolated forested, riverine flow-through, and slow-flow slough. In the top 24 cm of soil, isolated forested wetlands had the greatest pool (10.8 kg C m−2), significantly higher (P < 0.05) than the other two types (7.9 kg C m−2 in the riverine flow-though wetlands and 8.0 kg C m−2 in a slowly flowing slough), indicating that the type of organic matter entering into the system and the type of wetland may be key factors in defining its soil C pool. A riverine flow-through wetland in Ohio showed a significantly higher C pool (P < 0.05) in the permanently flooded location (18.5 kg C m−2) than in the edge location with fluctuating hydrology, where the soil is intermittently flooded (14.6 kg C m−2).  相似文献   

2.
Climate change is more pronounced at high northern latitudes, and may be affecting the physical, chemical, and biological attributes of the abundant wetlands in boreal forests. On the Yukon Flats, located in the boreal forest of northeast Alaska, wetlands originally sampled during 1985–1989 were re-sampled for water chemistry and macroinvertebrates in summer 2001–2003. Wetlands sampled lost on average 19% surface water area between these periods. Total nitrogen and most metal cations (Na, Mg, and Ca, but not K) increased between these periods, whereas total phosphorus and chlorophyll a (Chl a) declined. These changes were greater in wetlands that had experienced more drying (decreased surface area). Compared with 1985–1989, densities of cladocerans, copepods, and ostracods in both June and August were much higher in 2002–2003, whereas densities of amphipods, gastropods, and chironomid larvae were generally lower. In comparisons among wetlands in 2002–2003 only, amphipod biomass was lower in wetlands with lower Chl a, which might help explain the decline of amphipods since the late 1980s when Chl a was higher. The decline in Chl a corresponded to greatly increased zooplankton density in June, suggesting a shift in carbon flow from scrapers and deposit-feeders to water-column grazers. Declines in benthic and epibenthic deposit-feeding invertebrates suggest important food web effects of climate change in otherwise pristine wetlands of the boreal forest. Handling editor: R. Bailey  相似文献   

3.
Temperate wetlands in the Northern Hemisphere have high long-term carbon sequestration rates, and play critical roles in mitigating regional and global atmospheric CO2 increases at the century timescale. We measured soil organic carbon (SOC), total nitrogen (TN), and total phosphorus (TP) from 11 typical freshwater wetlands (Heilongjiang Province) and one saline wetland (Jilin Province) in Northeast China, and estimated carbon sequestration rates using 210Pb and 137Cs dating technology. Effects of climate, net primary productivity, and nutrient availability on carbon sequestration rates (Rcarbon) were also evaluated. Chronological results showed that surface soil within the 0–40 cm depth formed during the past 70–205 years. Soil accretion rates ranged from 2.20 to 5.83 mm yr−1, with an average of 3.84 ± 1.25 mm yr−1 (mean ± SD). Rcarbon ranged from 61.60 to 318.5 gC m−2 yr−1 and was significantly different among wetland types. Average Rcarbon was 202.7 gC m−2 yr−1 in the freshwater wetlands and 61.6 gC m−2 yr−1 in the saline marsh. About 1.04 × 108 tons of carbon was estimated to be captured by temperate wetland soils annually in Heilongjiang Province (in the scope of 45.381–51.085°N, 125.132–132.324°E). Correlation analysis showed little impact of net primary productivity (NPP) and soil nutrient contents on Rcarbon, whereas climate, specifically the combined dynamics of temperature and precipitation, was the predominant factor affecting Rcarbon. The negative relationship observed between Rcarbon and annual mean temperature (T) indicates that warming in Northeast China could reduce Rcarbon. Significant positive relationships were observed between annual precipitation (P), the hydrothermal coefficient (defined as P/AT, where AT was accumulative temperature ≥10 °C), and Rcarbon, indicating that a cold, humid climate would enhance Rcarbon. Current climate change in Northeast China, characterized by warming and drought, may form positive feedbacks with Rcarbon in temperate wetlands and accelerate carbon loss from wetland soils.  相似文献   

4.
5.
Global climate change is recognized as a threat to species survival and the health of natural systems. Scientists worldwide are looking at the ecological and hydrological impacts resulting from climate change. Climate change will make future efforts to restore and manage wetlands more complex. Wetland systems are vulnerable to changes in quantity and quality of their water supply, and it is expected that climate change will have a pronounced effect on wetlands through alterations in hydrological regimes with great global variability. Wetland habitat responses to climate change and the implications for restoration will be realized differently on a regional and mega-watershed level, making it important to recognize that specific restoration and management plans will require examination by habitat. Floodplains, mangroves, seagrasses, saltmarshes, arctic wetlands, peatlands, freshwater marshes and forests are very diverse habitats, with different stressors and hence different management and restoration techniques are needed. The Sundarban (Bangladesh and India), Mekong river delta (Vietnam), and southern Ontario (Canada) are examples of major wetland complexes where the effects of climate change are evolving in different ways. Thus, successful long term restoration and management of these systems will hinge on how we choose to respond to the effects of climate change. How will we choose priorities for restoration and research? Will enough water be available to rehabilitate currently damaged, water-starved wetland ecosystems? This is a policy paper originally produced at the request of the Ramsar Convention on Wetlands and incorporates opinion, interpretation and scientific-based arguments.  相似文献   

6.
Climate change will likely affect flooding regimes, which have a large influence on the functioning of freshwater riparian wetlands. Low water levels predicted for several fluvial systems make wetlands especially vulnerable to the spread of invaders, such as the common reed (Phragmites australis), one of the most invasive species in North America. We developed a model to map the distribution of potential germination grounds of the common reed in freshwater wetlands of the St. Lawrence River (Québec, Canada) under current climate conditions and used this model to predict their future distribution under two climate change scenarios simulated for 2050. We gathered historical and recent (remote sensing) data on the distribution of common reed stands for model calibration and validation purposes, then determined the parameters controlling the species establishment by seed. A two‐dimensional model and the identified parameters were used to simulate the current (2010) and future (2050) distribution of germination grounds. Common reed stands are not widespread along the St. Lawrence River (212 ha), but our model suggests that current climate conditions are already conducive to considerable further expansion (>16,000 ha). Climate change may also exacerbate the expansion, particularly if river water levels drop, which will expose large bare areas propitious to seed germination. This phenomenon may be particularly important in one sector of the river, where existing common reed stands could increase their areas by a factor of 100, potentially creating the most extensive reedbed complex in North America. After colonizing salt and brackishwater marshes, the common reed could considerably expand into the freshwater marshes of North America which cover several million hectares. The effects of common reed expansion on biodiversity are difficult to predict, but likely to be highly deleterious given the competitiveness of the invader and the biological richness of freshwater wetlands.  相似文献   

7.
Bats are considered important bioindicators and deliver key ecosystem services to humans. However, it is not clear how the individual and combined effects of climate change and land-use change will affect their conservation in the future. We used a spatial conservation prioritization framework to determine future shifts in the priority areas for the conservation of 169 bat species under projected climate and land-use change scenarios across Africa. Specifically, we modelled species distribution models under four different climate change scenarios at the 2050 horizon. We used land-use change scenarios within the spatial conservation prioritization framework to assess habitat quality in areas where bats may shift their distributions. Overall, bats’ representation within already existing protected areas in Africa was low (∼5% of their suitable habitat in protected areas which cover ∼7% of Africa). Accounting for future land-use change resulted in the largest shift in spatial priority areas for conservation actions, and species representation within priority areas for conservation actions decreased by ∼9%. A large proportion of spatial conservation priorities will shift from forested areas with little disturbance under present conditions to agricultural areas in the future. Planning land use to reduce impacts on bats in priority areas outside protected areas where bats will be shifting their ranges in the future is crucial to enhance their conservation and maintain the important ecosystem services they provide to humans.  相似文献   

8.
Mitigation of climate change (CC) is a regulating ecosystem service provided by priority habitats that is often co-delivered alongside their conservation of biodiversity. Carefully planned conservation management is thought necessary to support biodiversity adaptation to CC, but could also contribute to CC mitigation. This paper presents a methodology for assessing direct emissions of greenhouse gases (GHG: CO2, CH4 and N2O) from 12 UK priority habitats in 26 Special Areas of Conservation (SAC) using readily available data. Background emissions are estimated on the basis of published field research. The contribution of conservation management to GHG emission reduction is estimated using the IPCC GHG accounting methodology and other methods. Management Data Acquisition surveys carried out at selected SACs provided data on management practises for Scotland and Wales. Climate change mitigation actions identified in this study for priority habitats included livestock removal or change in stocking density, with GHG reduction potential of up to 3 tCO2e/animal/year, afforestation of acid grasslands—up to 19.4 tCO2e/ha/year, wetland restoration—0.3–0.8 tCO2e/ha/year and cessation of moorland burning—6.9 tCO2e/ha/year. Estimated GHG emissions from priority habitats can be used to identify win:win management options that co-deliver GHG mitigation, climate adaptation and conservation benefits for consideration by policy makers and conservation managers.  相似文献   

9.
Little Penguin (Eudyptula minor) is one of the most ecologically important seabirds in New Zealand and depends strongly on terrestrial ecosystems for nesting, moulting and breeding. Wellington, New Zealand, is one of the world's most important biodiversity hot spots for this species, mostly in confluence with human urban settlements. This species is currently suffering from the local impacts of climate change associated with urbanisation. Two suburbs of Wellington, New Zealand, that are used seasonally by Little Penguin as terrestrial habitat were selected as the study area to address two issues: (i) how local impacts of climate change may affect the population and habitat structure of species in urban coastal zones where land cover change occurs; and (ii) how landscape management practices may help to mitigate the impacts imposed by climate change on the species in such a context. Remote Sensing and Geographical Information Systems techniques were applied to quantify and measure the extent of the prehuman forests and current land cover classes in the study area to reveal the degree to which land cover has changed from predevelopment to the present time. The research shows that land cover change in the study area has been widespread and partly irreversible, particularly in areas covered by the class Built‐up Area. Results reveal that there are still spatial opportunities to safeguard this vulnerable species against the ill effects of climate change through landscape management practices.  相似文献   

10.
The analysis of climate change impact is essential to include in conservation planning of crop wild relatives (CWR) to provide the guideline for adequate long-term protection under unpredictable future environmental conditions. These resources play an important role in sustaining the future of food security, but the evidence shows that they are threatened by climate change. The current analyses show that five taxa were predicted to have contraction of more than 30 % of their current ranges: Artocarpus sepicanus (based on RCP 4.5 in both no dispersal and unlimited dispersal scenario and RCP 8.5 in no dispersal scenario by 2050), Ficus oleifolia (RCP 4.5 5 in both no dispersal and unlimited dispersal scenario by 2080), Cocos nucifera and Dioscorea alata (RCP 8.5 in both no dispersal and unlimited dispersal scenario by 2050), and Ficus chartacea (RCP 8.5 in both no dispersal and unlimited dispersal scenario by 2050 and 2080). It shows that the climate change impact is species-specific. Representative Concentration Pathways (RCP) of greenhouse gas (GHG) emission and dispersal scenarios influence the prediction models, and the actual future distribution range of species falls in between those scenarios. Climate refugia, holdout populations, and non-analogue community assemblages were identified based on the Protected Areas (PAs) network. PAs capacity is considered an important element in implementing a conservation strategy for the priority CWR. In areas where PAs are isolated and have less possibility to build corridors to connect each other, such as in Java, unlimited dispersal scenarios are unlikely to be achieved and assisted dispersal is suggested. The holdout populations should be the priority target for the ex situ collection. Therefore, by considering the climate refugia, PAs capacity and holdout populations, the goal of keeping high genetic variations for the long-term conservation of CWR in Indonesia can be achieved.  相似文献   

11.
There is an urgent need for accurate prediction of climate change impacts on species ranges. Current reliance on bioclimatic envelope approaches ignores important biological processes such as interactions and dispersal. Although much debated, it is unclear how such processes might influence range shifting. Using individual-based modelling we show that interspecific interactions and dispersal ability interact with the rate of climate change to determine range-shifting dynamics in a simulated community with two growth forms--mutualists and competitors. Interactions determine spatial arrangements of species prior to the onset of rapid climate change. These lead to space-occupancy effects that limit the rate of expansion of the fast-growing competitors but which can be overcome by increased long-distance dispersal. As the rate of climate change increases, lower levels of long-distance dispersal can drive the mutualists to extinction, demonstrating the potential for subtle process balances, non-linear dynamics and abrupt changes from species coexistence to species loss during climate change.  相似文献   

12.
气候变化影响与风险研究的理论范式和方法体系   总被引:1,自引:0,他引:1  
以全球变暖为主的气候变化将会在本世纪持续,针对气候变化影响与风险而采取适应和减缓措施,得到了国际社会的广泛认同。然而,气候变化影响与风险研究领域理论和方法并不规范,研究结果缺乏可比性。基于科学哲学家库恩提出的理论范式和构造范式概念,梳理、集成气候变化影响与风险研究的"脆弱性-要素分离-不确定性-风险"理论框架,总结相应的方法体系包括实地观测与科学实验、数值模型和统计方法、风险定量化评估框架等。气候变化影响与风险研究应遵循理论范式"四要素"的逻辑关系,综合运用多种分析方法,力求相关研究的整体性和系统化,以利增强气候变化影响与风险研究的科学性及其成果的应用指导意义。  相似文献   

13.
14.
Lichens are symbiotic organisms sensitive to climate change and susceptible to a severe decline in diversity, especially in high elevation environments that are already threatened. In this study, we focused on water-energy relationships derived from climatic variables and phylogenetic diversity indices of terricolous lichen communities occurring on a representative Mediterranean mountain. We hypothesized that the variation of precipitation and temperature and their interaction along the altitudinal gradient will shape the phylogenetic diversity and structure of lichen communities. Our results reveal that dry and arid conditions lead to a strong loss in phylogenetic diversity with consequent impoverishment of high elevation lichen communities under a climate change scenario. The interaction between variables, reflecting water-energy relationships with phylogenetic and community diversity patterns, suggests that in a future climate change scenario, the novel climatic conditions may reduce the capability of the species to survive harsher conditions, and Mediterranean mountains may face a severe loss of genetic diversity in a climate change scenario.  相似文献   

15.
Soluble reactive phosphorus (SRP) transport/retention was determined at four sites in three rainforest streams draining La Selva Biological Station, Costa Rica. La Selva is located at the base of the last remaining intact rainforest transect from 30 m above sea level to 3000 m along the entire Caribbean slope of Central America. Steam SRP levels can be naturally high there due to regional, geothermal groundwater discharged at ambient temperature. Monitoring since 1988 has revealed distinctive long-term differences in background SRP and total P (TP) for three streams in close proximity, and identified the impact of ENSO (El Nino Southern Oscillation) events on SRP-enriched reaches. Mean interannual SRP concentrations (± standard deviation) were 89 ± 53μg/l in the Salto (1988–1996), 21 ± 39μg/l in the Pantano (1988–1998), and 26 ± 35μg/l in the Sabalo (1988–1996). After January, 1997 the separate upland-lowland contributions to discharge and SRP load were determined monthly in the Salto. SRP in Upper Salto was low (19 ± 8μg/l, 1997–2002) until enriched at␣the upland-lowland transition by regional groundwater. Mean SRP concentration in Lower␣Salto (108 ± 104μg/l) was typically highest February–April, the driest months, and lowest July–September, the wettest. SRP concentration was positively correlated to the inverse of discharge in Lower Salto when ENSO data were omitted (1992 and 1998–1999), but not in the Upper Salto, Pantano, or Sabalo. TP was positively correlated to the inverse of discharge in all three streams when ENSO data were omitted. High SRP springs and seeps along the Lower Salto contributed 36% of discharge but 85% of SRP export 1997–2001. Annual SRP flux from the total Salto watershed (1997–2001) averaged 2.9 kg/ha year, but only 0.6 kg/ha year from the Upper Salto. A dye tracer injection showed that pore water environments were distinctly different between Upper and Lower Salto. Upper Salto had high surface water–pore water exchange, high dissolved oxygen, low SRP, and low conductivity similar to surface water, and Lower Salto had low surface water–pore water exchange, low dissolved oxygen, high SRP, and high conductivity reflecting geothermal groundwater influence. SRP export from the Salto was controlled by regional groundwater transfer, which in similar volcanic settings could be a significant P source. However, ENSO events modified the SRP concentration in the Salto suggesting that long-term monitoring is required to understand underlying SRP dynamics and P flux to downstream communities.  相似文献   

16.
尖峰岭热带森林土壤C储量和CO2排放量的初步研究   总被引:82,自引:1,他引:81       下载免费PDF全文
 本文根据定位观测数据和有关历史资料,研究了海南岛尖峰岭林区主要森林土壤的有机C储量、热带山地雨林和半落叶季雨林凋落物的C储量和林地CO2的排放量、以及“刀耕火种”和砍伐森林等人类活动对土壤C的影响,对于进一步认识热带林的生态功能,弄清我国温室气体的排放量,正确评价中国森林在全球生物圈C平衡中的作用,具有一定的参考价值。  相似文献   

17.
祁连山作为我国重要的生态功能区、西北地区重要的生态安全屏障和河流产流区,是气候变化敏感区和生态环境脆弱区,其生态环境对西北地区经济发展起着重要作用。本研究利用祁连山区气温和降水观测数据、MOD10A2积雪产品以及石羊河、黑河和疏勒河流量资料,系统分析了1961—2020年祁连山区的气候变化特征,以及在气候变暖背景下,气候变化对祁连山区水资源的影响。结果表明: 1961—2020年,祁连山区平均气温呈显著上升趋势,升温速率达0.39 ℃·(10 a)-1,西段升温速率最大,中、东段次之,冬季升温趋势最显著,春季最小;祁连山区平均气温在1997年发生突变。祁连山区年降水量总体呈波动增加趋势[10 mm·(10 a)-1],中段增加最明显,2004年以来祁连山区处于多雨时期,气候呈暖湿化趋势;四季降水量均呈增加趋势,夏季降水增加对年降水贡献最大;年降水以年际尺度变化为主,2.8年的年际尺度贡献率高达64.3%。祁连山积雪面积受气温和降雪影响明显,与夏季气温存在负相关,与降雪量存在正相关;2016—2020年,祁连山增温趋缓、降雪增多,积雪面积呈增加趋势。2000年以来,祁连山升温加剧,降水增多,冰雪融水增加,石羊河、黑河和疏勒河出山径流均呈增加趋势。研究结果对祁连山区生态文明建设和应对气候变化具有重要意义。  相似文献   

18.
We studied topographical and year-to-year variation in the performance (pupal weights, survival) and larval parasitism of Epirrita autumnata larvae feeding on mountain birch in northernmost Finland in 1993–1996. We found differences in both food plant quality and parasitism between sites ranging from 80 m to 320 m above sea level. Variation in food plant quality had particularly marked effects on larval survival. The advanced phenology of the birches in relation to the start of the larval period reduced pupal weights. Parasitism rates were different between years and between sites. The clearest site differences were in the proportions of different parasitoid species: Eulophus larvarum was most abundant at the lowest-altitude sites, and Cotesia jucunda at the highest. Differences in the performance of E. autumnata were related to temperature conditions: at higher temperatures, survival and the egg production index were lower, and larval parasitism was higher than at lower temperatures. The higher parasitism at higher temperatures was probably due to greater parasitoid activity during warmer days. In the comparison of different sources of spatial and annual variation in the performance of E. autumnata, the most important factor appeared to be egg mortality related to minimum winter temperature, followed by parasitism and, finally, the variation in food plant quality. If, as predicted, the climate gradually warms up, the effects of warmer summers on the outbreaks of E. autumnata suggest a decrease in outbreak intensity. Received: 4 January 1999 / Accepted: 22 March 1999  相似文献   

19.
Agriculture in developing countries has attracted increasing attention in international negotiations within the United Nations Framework Convention on Climate Change for both adaptation to climate change and greenhouse gas mitigation. However, there is limited understanding about potential complementarity between management practices that promote adaptation and mitigation, and limited basis to account for greenhouse gas emission reductions in this sector. The good news is that the global research community could provide the support needed to address these issues through further research linking adaptation and mitigation. In addition, a small shift in strategy by the Intergovernmental Panel on Climate Change (IPCC) and ongoing assistance from agricultural organizations could produce a framework to move the research and development from concept to reality. In turn, significant progress is possible in the near term providing the basis for UNFCCC negotiations to move beyond discussion to action for the agricultural sector in developing countries.  相似文献   

20.
The Raccoon River Basin is the primary source for drinking water in Iowa's largest city and plays a major role in the Mississippi River Basin's high nutrient exports. Future climate change may have major impacts on the biological, physiological, and agronomic processes imposing a threat to ecosystem services. Efforts to reduce nitrogen (N) loads within this basin have included local litigation and the implementation of the Iowa Nutrient Reduction Strategy, which suggest incorporating bioenergy crops (i.e., miscanthus) within the current corn–soybean landscape to reach a 41% reduction in nitrate loads. This study focuses on simulating N export for historical and future land use scenarios by using an agroecosystem model (Agro-IBIS) and a hydrology model (THMB) at the 500-m resolution, similar to the scale of agricultural fields. Model simulations are driven by CMIP5 climate data for historical, mid-century, and late-century under the RCP 4.5 and 8.5 warming projections. Using recent crop profit analyses for the state of Iowa, profitability maps were generated and nitrogen leaching thresholds were used to determine where miscanthus should replace corn–soybean area to maximize reductions in N pollution. Our results show that miscanthus inclusion on low profit and high N leaching areas can result in a 4% reduction of N loss under current climate conditions and may reduce N loss by 21%–26% under future climate conditions, implying that water quality has the potential continue to improve under future climate conditions when strategically implemented conservation practices are included in future farm management plans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号