首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acid adaptation of Streptococcus mutans UA159 involves several different mechanisms, including the ability to alter its proportion of long-chain, monounsaturated membrane fatty acids (R. G. Quivey, Jr., R. Faustoferri, K. Monahan, and R. Marquis, FEMS Microbiol. Lett. 189:89-92, 2000). In the present study, we examined the mechanism and timing of changes in fatty acid ratios and the potential benefit that an increased proportion of long-chained fatty acids has for the organism during growth at low pH. Cells taken from steady-state cultures at intermediate pH values of 6.5, 6, and 5.5 showed incremental changes from the short-chained, saturated membrane fatty acid profile normally seen in pH 7 cultures to the long-chained, monounsaturated fatty acids more typically observed in acidic cultures (pH 5). Our observations showed that the bacterium was capable of effecting the majority of changes in approximately 20 min, far less than one generation time. However, reversion to the distribution of fatty acids seen in cells growing at a pH of 7 required a minimum of 10 generations. Fatty acid composition analysis of cells taken from cultures treated with chloramphenicol suggested that the changes in fatty acid distribution did not require de novo protein synthesis. Cells treated with the fatty acid biosynthesis inhibitor cerulenin were unable to alter their membrane fatty acid profiles and were unable to survive severe acidification. Results presented here indicate that membrane fatty acid redistribution is important for low pH survival and, as such, is a component of the S. mutans acid-adaptation arsenal.  相似文献   

2.
Low pH-induced membrane fatty acid alterations in oral bacteria   总被引:4,自引:0,他引:4  
Four oral bacterial strains, of which two are considered aciduric and two are considered acid-sensitive, were grown under glucose-limiting conditions in chemostats to determine whether their membrane fatty acid profiles were altered in response to environmental acidification. Streptococcus gordonii DL1, as well as the aciduric strains S. salivarius 57.I, and Lactobacillus casei 4646 increased the levels of mono-unsaturated membrane fatty acids. The non-aciduric strain S. sanguis 10904 did not alter its membrane composition in response to pH values examined here. Thus, in response to low pH, aciduric oral bacteria alter their membrane composition to contain increased levels of long-chained, mono-unsaturated fatty acids. This suggests that membrane fatty acid adaptation is a common mechanism utilized by bacteria to withstand environmental stress.  相似文献   

3.
Previously, it has been demonstrated that the membrane fatty acid composition of Streptococcus mutans is affected by growth pH (E. M. Fozo and R. G. Quivey, Jr., Appl. Environ. Microbiol. 70:929-936, 2004; R. G. Quivey, Jr., R. Faustoferri, K. Monahan, and R. Marquis, FEMS Microbiol. Lett. 189:89-92, 2000). Specifically, the proportion of monounsaturated fatty acids increases when the organism is grown in acidic environments; if the shift to increased monounsaturated fatty acids is blocked by the addition of a fatty acid biosynthesis inhibitor, the organism is rendered more acid sensitive (E. M. Fozo and R. G. Quivey, Jr., Appl. Environ. Microbiol. 70:929-936, 2004). Recently, work with Streptococcus pneumoniae has identified a novel enzyme, FabM, responsible for the production of monounsaturated fatty acids (H. Marrakchi, K. H. Choi, and C. O. Rock, J. Biol. Chem. 277:44809-44816, 2002). Using the published S. pneumoniae sequence, a putative FabM was identified in the S. mutans strain UA159. We generated a fabM strain that does not produce unsaturated fatty acids as determined by gas chromatography of fatty acid methyl esters. The mutant strain was extremely sensitive to low pH in comparison to the wild type; however, the acid-sensitive phenotype was relieved by growth in the presence of long-chain monounsaturated fatty acids or through genetic complementation. The strain exhibited reduced glycolytic capability and altered glucose-PTS activity. In addition, the altered membrane composition was more impermeable to protons and did not maintain a normal DeltapH. The results suggest that altered membrane composition can significantly affect the acid survival capabilities, as well as several enzymatic activities, of S. mutans.  相似文献   

4.
The development of a system for modifying the membrane fatty acid composition of cultured soybean cells (Glycine max [L.] Merr.) is described. Tween-fatty acid esters carrying specific fatty acids were synthesized and added to the medium of suspension cultures. Cells transferred large quantities of exogenous fatty acids from Tweens to all acylated membrane lipids; up to 50% of membrane fatty acids were exogenously derived. C15 to C20 saturated fatty acids and C16, C18, and C20 unsaturated fatty acids with either cis or trans double bonds were incorporated into lipids. Cells elongated saturated fatty acids of C16 or less, and unsaturated fatty acids with cis double bonds were further desaturated. No other types of modifications were observed. Growth ceased in cells treated with excessive concentrations of Tween-fatty acid esters, but frequently not for several days. Cessation of cell growth was correlated with changes in membrane fatty acid composition resulting from incorporation of large amounts of exogenous fatty acids into membrane lipids, although cells tolerated large variations in fatty acid composition. Maximum tolerable Tween concentrations varied widely according to the fatty acid supplied. Potential uses of this system and implications of the observed modifications on the pathway of incorporation are discussed.  相似文献   

5.
The lipids in callus cultures of Hydnocarpus anthelminthica were studied after 60, 160 and 460 days of growth. In each of the cultures the lipid classes usually found in plant tissue cultures were detected. With increasing age of the cultures the total lipid content as well as the proportions of triglycerides decreased. The major constituent fatty acids of the total lipids were palmitic and linoleic acids. Small amounts of cyclopentenyl fatty acids were also present. The proportions of saturated straight-chain fatty acids increased with the age of the cultures whereas the proportions of monounsaturated straight-chain fatty acids decreased. Only small changes were observed with polyunsaturated fatty acids. The content of cyclopentenyl fatty acids rose with the age of the cultures. The monounsaturated straight-chain fatty acids consisted of mixtures of isomers whose composition changed with the age of the cultures. In contrast, the polyunsaturated straight-chain fatty acids belonged exclusively to the Δ9 series, regardless of the age of the cultures.  相似文献   

6.
The fatty acid composition of Pseudomonas aeruginosa PAO1 was compared between biofilm and batch planktonic cultures. Strain PAO1 biofilms were able to maintain a consistent fatty acid profile for up to 6 days, whereas strain PAO1 batch planktonic cultures showed a gradual loss of cis-monounsaturated fatty acids over 4 days. Biofilms exhibited a greater proportion of hydroxy fatty acids but a lower proportion of both cyclopropane fatty acids and saturated fatty acids (SAFAs). SAFAs with >=16 carbons, in particular, decreased in biofilms when compared with that in batch planktonic cultures. A reduced proportion of SAFAs and a decline in overall fatty acid chain length indicate more fluidic biophysical properties for cell membranes of P. aeruginosa in biofilms. Separating the biofilms into 2 partitions and comparing their fatty acid compositions revealed additional trends that were not observed in the whole biofilm: the shear-nonremovable layer consistently showed greater proportions of hydroxy fatty acid than the bulk liquid + shear-removable portion of the biofilm. The shear-nonremovable portion demonstrated a relatively immediate decline in the proportion of monounsaturated fatty acids between days 2 and 4; which was offset by an increase in the proportion of cyclopropane fatty acids, specifically 19:0cyc(11,12). Simultaneously, the shear-removable portion of the biofilm showed an increase in the proportion of trans-monounsaturated fatty acids and cyclopropane fatty acids.  相似文献   

7.
Rabbit thymocytes were isolated and incubated for various lengths of time with concanavalin A. The cultures were pulsed for the last 12.5 min of incubation with equimolar mixtures of radioactively labelled fatty acids, either [3H]arachidonate and [14C]oleate or [3H]arachidonate and [14C]palmitate, and the uptake of each fatty acid into phospholipid of plasma membrane was determined. Upon binding of the mitogen, the fatty acids were incorporated at an increased rate with a new steady state being reached between 12.5 and 42.5 min after stimulation. Initially after 12.5 min, when the two fatty acids were added together, no preferential incorporation of the polyunsaturated fatty acid arachidonate was seen compared to the saturated or monounsaturated ones, palmitate or oleate. However shortly thereafter arachidonate, when compared to palmitate or oleate, started to be preferentially incorporated into plasma membrane phospholipid so that by 4 h after activation, only arachidonate was incorporated at an increased rate: the uptake of palmitate and oleate had reverted to that of unstimulated cells. In contrast, when palmitate or oleate were added alone, after 4 h of activation incorporation was increased similar to that of arachidonate, suggesting that all long chain fatty acids compete for the same activated enzyme(s). A detailed analysis of incorporation into phospholipid species showed that all fatty acids were taken up with the highest rate into phosphatidylcholine. After activation, fatty acid incorporation was increased by approx. 50% for phosphatidylcholine: the highest stimulation rates were observed with phosphatidylinositol (3–7-fold) and phosphatidylethanolamine (2–3-fold). The data suggest that shortly after stimulation with mitogens, the membrane phospholipids start to change by replacing saturated and monounsaturated fatty acids by polyunsaturated ones, thus creating a new membrane.  相似文献   

8.
Rabbit thymocytes were isolated and incubated for various lengths of time with concanavalin A. The cultures were pulsed for the last 12.5 min of incubation with equimolar mixtures of radioactively labelled fatty acids, either [3H]arachidonate and [14C]oleate or [3H]arachidonate and [14C]palmitate, and the uptake of each fatty acid into phospholipid of plasma membrane was determined. Upon binding of the mitogen, the fatty acids were incorporated at an increased rate with a new steady state being reached between 12.5 and 42.5 min after stimulation. Initially after 12.5 min, when the two fatty acids were added together, no preferential incorporation of the polyunsaturated fatty acid arachidonate was seen compared to the saturated or monounsaturated ones, palmitate or oleate. However shortly thereafter arachidonate, when compared to palmitate or oleate, started to be preferentially incorporated into plasma membrane phospholipid so that by 4 h after activation, only arachidonate was incorporated at an increased rate: the uptake of palmitate and oleate had reverted to that of unstimulated cells. In contrast, when palmitate or oleate were added alone, after 4 h of activation incorporation was increased similar to that of arachidonate, suggesting that all long chain fatty acids compete for the same activated enzyme(s). A detailed analysis of incorporation into phospholipid species showed that all fatty acids were taken up with the highest rate into phosphatidylcholine. After activation, fatty acid incorporation was increased by approx. 50% for phosphatidylcholine: the highest stimulation rates were observed with phosphatidylinositol (3-7-fold) and phosphatidylethanolamine (2-3-fold). The data suggest that shortly after stimulation with mitogens, the membrane phospholipids start to change by replacing saturated and monounsaturated fatty acids by polyunsaturated ones, thus creating a new membrane.  相似文献   

9.
Since it has been earlier reported that d-galactosamine induces an inhibition of palmitoylcarnitine transferase I and a depletion of mitochondrial phospholipids which were both prevented by clofibrate, an evaluation of the effects of these drugs on mitochondrial fatty acid composition was made. Galactosamine does not alter the fatty acid pattern of these fatty acids whereas clofibrate induces a 2-fold increase in monounsaturated / saturated fatty acids ratio and a 10-fold decrease of the 20:4 (n − 6)/20:3 (n − 6) ratio in phosphatidylcholine. These alterations suggest an increase of Δ9-desaturation and decrease of Δ5-desaturation. To determine whether the drug-induced changes in mitochondrial phospholipids has an effect on the physical properties of the membrane, the lipid structural order of mitochondrial preparations was studied using the lipophilic probes DPH and TMA-DPH. Mitochondria isolated either from galactosamine- or clofibrate-treated rats showed a decrease in fluorescence polarization, indicating an overall decrease in lipid structural order. This alteration is more drastic when both drugs are administered. This phenomenon suggests drastic changes in the bulk phase of inner mitochondrial membrane lipids after treatments and could explain the altered kinetic properties of palmitoylcarnitine transferase I.  相似文献   

10.
We exploited the unique ecological niche of oil fly larval guts to isolate a strain of Staphylococcus haemolyticus which may be the most solvent-tolerant gram-positive bacterium yet described. This organism is able to tolerate 100% toluene, benzene, and p-xylene on plate overlays and saturating levels of these solvents in monophasic liquid cultures. A comparison of membrane fatty acids by gas chromatography after growth in liquid media with and without toluene showed that in cells continuously exposed to solvent the proportion of anteiso fatty acids increased from 25.8 to 33.7% while the proportion of 20:0 straight-chain fatty acids decreased from 19.3 to 10.1%. No changes in the membrane phospholipid composition were noted. Thus, S. haemolyticus alters its membrane fluidity via fatty acid composition to become more fluid when it is exposed to solvent. This response is opposite that commonly found in gram-negative bacteria, which change their fatty acids so that the cytoplasmic membrane is less fluid. Extreme solvent tolerance in S. haemolyticus is not accompanied by abnormal resistance to anionic or cationic detergents. Finally, six strains of Staphylococcus aureus and five strains of Staphylococcus epidermidis, which were not obtained by solvent selection, also exhibited exceptional solvent tolerance.  相似文献   

11.
The effect of modifying fatty acyl composition of cellular membrane phospholipids on receptor-mediated intracellular free Ca2+ concentration ([Ca2+]i) increase was investigated in a leukemic T cell line (JURKAT). After growing for 72 h in medium supplemented with unsaturated fatty acids (UFAs) and α-tocopherol, the fatty acyl composition of membrane phospholipids in JURKAT cells was extensively modified. Each respective fatty acid supplemented in the culture medium was readily incorporated into phosphatidylinositol, phosphatidylserine, phosphatidylethanolamine and phosphatidylcholine in the JURKAT cells. The total n ? 6 fatty acyl content was markedly reduced in phosphatidylinositol and phosphatidylcholine of cells grown in the presence of n ? 3 fatty acids (α-linolenic acid, eicosapentaenoic acid and docosahexaenoic acid). Conversely, in the presence of n ? 6 fatty acids (linoleic acid and arachidonic acid), the total n ? 3 fatty acyl content was reduced in all the phospholipids examined. In n ? 3 and n ? 6 polyunsaturated fatty acid (PUFA) modified JURKAT cells, the total n ? 9 monounsaturated fatty acyl content in the phospholipids were markedly reduced. Changing the fatty acyl composition of membrane phospholipids in the JURKAT cells appear to have no affect on the presentation of the T cell receptor/CD3 complex or the binding of anti-CD3 antibodies (OKT3) to the CD3 complex. However, the peak increase in [Ca2+]i and the prolonged sustained phase elicited by OKT3 activation were suppressed in n ? 3 and n ? 6 PUFA but not in n ? 9 monounsaturated fatty acid modified cells. In Ca2+ free medium, OKT3-induced transient increase in [Ca2+]i, representing Ca2+ release from the inositol 1,4,5-triphosphate-sensitive Ca2+ stores, were similar in control and UFA modified cells. Using Mn2+ entry as an index of plasma membrane Ca2+ permeability, the rate of fura-2 fluorescence quenching as a result of Mn2+ influx stimulated by OKT3 in n ? 9 monounsaturated fatty acid modified cells was similar to control cells, but the rates in n ? 3 and n ? 6 PUFA modified cells were significantly lower. These results suggest that receptor-mediated Ca2+ influx in JURKAT cells is sensitive to changes in the fatty acyl composition of membrane phospholipids and n ? 9 monounsaturated fatty acids appears to be important for the maintenance of a functional Ca2+ influx mechanism.  相似文献   

12.
Previous studies have shown that aldosterone treatment of amphibian epithelial cells results not only in stimulation of Na(+) absorption but also in changes in phospholipid composition which are necessary for the mineralocorticoid action of aldosterone. The present study was designed to investigate the effect of aldosterone on phospholipids of mammalian epithelia. Phospholipid and fatty acid composition was examined in colonic epithelium (mineralocorticoid target tissue) and thymus (non-mineralocorticoid but glucocorticoid target tissue) of rats which had received aldosterone or vehicle by a miniosmotic pump for 7 days. Aldosterone increased the mass of colonic phospholipids relative to cellular proteins with concomitant changes in the percentage distribution of fatty acids, whereas the relative distribution of membrane phospholipds was not changed. Phosphatidylcholine increased the content of polyunsaturated and decreased that of monounsaturated fatty acids, which predominantly reflected the accretion of arachidonic and a decrease in oleic and palmitoleic acids. Within the phosphatidylethanolamine subclass, pretreatment of rats with aldosterone decreased the content of monounsaturated fatty acids (predominantly oleic and palmitoleic acid) and of n-3 fatty acids, and increased the content of saturated fatty acids (palmitic acid). The saturated-to-nonsaturated fatty acid ratio also significantly increased after aldosterone treatment. No changes in thymic phospholipids were seen. The results are consistent with the contention that aldosterone specifically modulates phospholipid concentration and metabolism in mineralocorticoid target tissue. The changes in phospholipid content and its fatty acid composition during the fully developed effect of aldosterone may reflect a physiologically important phenomenon with long-term consequences for membrane structure and function.  相似文献   

13.
Homeoviscous adaptation in poikilotherms is based in the regulation of the level of desaturation of fatty acids, variation in phospholipids head groups and sterol content in the membrane lipids, in order to maintain the membrane fluidity in response to changes in environmental temperature. Increased proportion of unsaturated fatty acids is thought to be the main response to low-temperature acclimation, which is mostly achieved by fatty acid desaturases. Genome analysis of the ciliate Tetrahymena thermophila and a gene knockout approach has allowed us to identify one Δ12 FAD and to study its activity in the original host and in a yeast heterologous expression system. The “PUFA index” -relative content of polyunsaturated fatty acids compared to the sum of saturated and monounsaturated fatty acid content- was ~57% lower at 15 °C and 35 °C in the Δ12 FAD gene knockout strain (KOΔ12) compared to WT strain. We characterized the role of T. thermophila Δ12 FAD on homeoviscous adaptation and analyzed its involvement in cellular growth, cold stress response, and membrane fluidity, as well as its expression pattern during temperature shifts. Although these alterations allowed normal growth in the KOΔ12 strain at 30 °C or higher temperatures, growth was impaired at temperatures of 20 °C or lower, where homeoviscous adaptation is impaired. These results stress the importance of Δ12 FAD in the regulation of cold adaptation processes, as well as the suitability of T. thermophila as a valuable model to investigate the regulation of membrane lipids and evolutionary conservation and divergence of the underlying mechanisms.  相似文献   

14.
Qualitative and quantitative changes were observed in lipids, poly--hydroxybutyrate (PHB), and a cell wall peptidoglycan consitutent in a marine bacterial isolate during starvation for 24 h in an energy and nutrient-free medium. While the amount and composition of the membrane fatty acids fluctuated within the first hours of starvation, the total amount of fatty acids decreased during the starvation period. Furthermore, the ratio of monounsaturated to saturated fatty acids decreased and the proportion of short chain fatty acids increased. In the very early phase of starvation the bacteria contained PHB, which had been accumulated during the growth phase, but after 3 h no PHB was detected. Cells starved for phosphorus showed a different pattern as PHB was initially accumulated and did not decrease until 5 h of starvation. Synthesis of the cell wall amino acid d-alanine was initiated during the first phase of starvation. The effects of these changes on membrane fluidity and uptake of substrates as well as the use of fatty acids and PHB as energy resources during starvation are discussed.Non-common abbreviations FID flame ionization detector - GC gas chromatography - HFBA heptafluorobutyric anhydride - MS mass spectrometry - NSS nine salt solution - PHB poly--hydroxybutyrate - PFB pentafluorobenzylbromide  相似文献   

15.
Cells of Streptococcus mutans UA159 physiologically adapted to acidification during growth at pH 5 in glucose-limited chemostat cultures were enriched in mono-unsaturated and longer chain fatty acids compared with unadapted cells grown under the same conditions but at pH 7. Ratios of unsaturated to saturated fatty acids in the cells were, respectively, 1.2 and 0.3. Cyclopropane fatty acids were not detected. Streptococcus sobrinus 6715, which is known to have minimal acid-adaptive capacity, showed only minimal change in membrane fatty acids.  相似文献   

16.
S V Avery  N G Howlett    S Radice 《Applied microbiology》1996,62(11):3960-3966
One major mechanism of copper toxicity towards microorganisms is disruption of plasma membrane integrity. In this study, the influence of plasma membrane fatty acid composition on the susceptibility of Saccharomyces cerevisiae to Cu2+ toxicity was investigated. Microbial fatty acid composition is highly variable, depending on both intrinsic and environmental factors. Manipulation was achieved in this study by growth in fatty acid-supplemented medium. Whereas cells grown under standard conditions contained only saturated and monounsaturated fatty acids, considerable incorporation of the diunsaturated fatty acid linoleate (18:2) (to more than 65% of the total fatty acids) was observed in both whole-cell homogenates and plasma membrane-enriched fractions from cells grown in linoleate-supplemented medium. Linoleate enrichment had no discernible effect on the growth of S. cerevisiae. However, linoleate-enriched cells were markedly more susceptible to copper-induced plasma membrane permeabilization. Thus, after addition of Cu(NO3)2, rates of cellular K+ release (loss of membrane integrity) were at least twofold higher from linoleate-supplemented cells than from unsupplemented cells; this difference increased with reductions in the Cu2+ concentration supplied. Levels of cellular Cu accumulation were also higher in linoleate-supplemented cells. These results were correlated with a very marked dependence of whole-cell Cu2+ toxicity on cellular fatty acid unsaturation. For example, within 10 min of exposure to 5 microM Cu2+, only 3% of linoleate-enriched cells remained viable (capable of colony formation). In contrast, 100% viability was maintained in cells previously grown in the absence of a fatty acid supplement. Cells displaying intermediate levels of linoleate incorporation showed intermediate Cu2+ sensitivity, while cells enriched with the triunsaturated fatty acid linolenate (18:3) were most sensitive to Cu2+. These results demonstrate for the first time that changes in cellular and plasma membrane fatty acid compositions can dramatically alter microbial sensitivity to copper.  相似文献   

17.
The phospholipids of Pseudomonas putida P8 contain monounsaturated fatty acids in the cis and trans configuration. Cells of this phenol-degrading bacterium change the proportions of these isomers in response to the addition or elimination of a membrane active compound such as 4-chlorophenol. This study undoubtedly reveals that the cis unsaturated fatty acids are directly converted into trans isomers without involvement of de novo synthesis of fatty acids. Oleic acid, which cannot be synthesized by this bacterium, was incorporated as a cis unsaturated fatty acid marker in the membrane lipids of growing cells. The conversion of this fatty acid into the corresponding trans isomer was demonstrated by gas chromatographic-mass spectrometric analysis and use of 14C-labeled oleic acid. Separation and isolation of the cellular membranes showed that the fatty acid isomerase is located in the cytoplasmic membrane of P. putida P8.Abbreviation 4-CP 4-chlorophenol  相似文献   

18.
Cells of Acer pseudoplatanus were grown in batch suspension culture for 22 days. The cultures were initiated at high cell density of 2 × 105 cells per ml of culture. Growth was characterised by a short lag phase, an exponential phase of rapid cell division and growth, and finally a stationary phase. Quantitative but not qualitative changes were observed in total lipid content, fatty acids and phospholipids at different stages of growth. Total lipids, phospholipids and fatty acids showed maximum concentrations in 12 day old cells. The major phospholipids isolated were phosphatidylcholine and phosphatidylethanolamine with minor amounts of phosphatidic acid and lysophosphatides. Other lipid components present were mono- and digalactosyl diglycerides, cerebrosides, sterol glucosides, free fatty acids and esterified sterol glucosides. The major constituent fatty acids were myristic acid (14:0), palmitic acid (16:0), stearic acid (18:0), oleic acid (18:1), linoleic acid (18:2) and linolenic acid (18:3). During exponential cell growth the proportion of 16:0, 18:2 and 18:3 constituted nearly 90% of the total fatty acids. Triglycerides were the major repository of myristic acid (14:0) with substantial amounts of palmitic acid (16:0), whereas phospholipids contained 16:0, 18:2 and 18:3 in high amounts.  相似文献   

19.
Root, hypocotyl, cotyledon, stem and leaf of Cucumis melo var. utilissimus seedlings were used for callus induction. Comparison was made between these parts, between callus tissues originating from all the parts and between each part and its callus, with respect to the fatty acid composition of total lipids. In all the parts there was a greater proportion of unsaturated fatty acids, the predominant fatty acid in root, stem and leaf being linolenic acid whilst in the cotyledon linoleic predominated. In the hypocotyl these two acids were present in equal amounts. In callus cultures the proportion of saturated acids was greater and the predominant fatty acid was palmitic. The major unsaturated fatty acid in callus cultures was linolenic. The analysis showed that callus tissue and its respective plant part had different fatty acid patterns and that all the callus cultures had very similar patterns irrespective of their origin.  相似文献   

20.
Studying the effects of saturated and unsaturated fatty acids on biological and model (liposomes) membranes could provide insight into the contribution of biophysical effects on the cytotoxicity observed with saturated fatty acids. In vitro experiments suggest that unsaturated fatty acids, such as oleate and linoleate, are less toxic, and have less impact on the membrane fluidity. To understand and assess the biophysical changes in the presence of the different fatty acids, we performed computational analyses of model liposomes with palmitate, oleate, and linoleate. The computational results indicate that the unsaturated fatty acid chain serves as a membrane stabilizer by preventing changes to the membrane fluidity. Based on a Voronoi tessellation analysis, unsaturated fatty acids have structural properties that can reduce the lipid ordering within the model membranes. In addition, hydrogen bond analysis indicates a more uniform level of membrane hydration in the presence of oleate and linoleate as compared to palmitate. Altogether, these observations from the computational studies provide a possible mechanism by which unsaturated fatty acids minimize biophysical changes and protect the cellular membrane and structure. To corroborate our findings, we also performed a liposomal leakage study to assess how the different fatty acids alter the membrane integrity of liposomes. This showed that palmitate, a saturated fatty acid, caused greater destabilization of liposomes (more “leaky”) than oleate, an unsaturated fatty acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号