首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The O-linked oligosaccharides attached to human erythrocyte glycophorins were extensively characterized. In addition to the previously described disialylated tetrasaccharide, NeuNAc alpha 2----3Gal beta 1----3 (Neu-NAc alpha 2----6)GalNAcOH and monosialylated trisaccharide, NeuNAc alpha 2----3Gal beta 1----3GalNAcOH, novel trisialylated oligosaccharides were isolated. Methylation analysis, fast atom bombardment-mass spectrometry, and enzymatic degradation were used to elucidate the following novel structures: formula; see text: These results suggest that O-linked oligosaccharides with a disialosyl group, NeuNAc alpha 2----8NeuNAc alpha 2----, may be present in various tissues.  相似文献   

2.
M Fukuda 《Glycobiology》1991,1(4):347-356
Leukosialin, also called CD43 or sialophorin, is a major sialoglycoprotein expressed widely in various leukocytes (granulocytes, monocytes/macrophages and T-lymphocytes). Leukosialin is heavily glycosylated by O-linked oligosaccharides (70-80 oligosaccharides/molecule) and the structures of those O-glycans are characteristic to each cell lineage and differentiation stage. In particular, the branched hexasaccharide, NeuNAc alpha 2----3Gal beta 1----3(NeuNAc alpha 2----3Gal beta 1----4GlcNAc beta 1----6)GalNAc is specifically expressed in activated T-lymphocytes as well as in thymocytes and T-lymphocytes from patients with leukaemia, and immuno-deficiency syndromes. A portion of these O-glycans are attached to a domain with tandem repeats in the polypeptide of leukosialin. However, the entire translation product, including such tandem repeats, is coded by one exon and a short novel promoter sequence confers the expression of the leukosialin gene. Leukosialin is apparently involved in T-cell-B-cell interaction during immune reaction and binds to ligands on antigen-presenting B-cells. These results imply that leukosialin plays critical roles in immune cell interaction and differences in attached O-glycans most likely influence the interaction of leukosialin with ligands.  相似文献   

3.
Poly-N-acetyllactosamine extension has been found in O-glycans in addition to N-glycans and glycosphingolipids. Attempts were made in HL-60 and K562 cells to determine the amount of poly-N-acetyllactosaminyl O-glycans in the major sialoglycoprotein, leukosialin. Leukosialin was immunoprecipitated from [3H]glucosamine-labeled HL-60 and K562 cells. Glycopeptides were prepared by Pronase digestion, and O-glycan-containing glycopeptides were isolated by affinity chromatography using Jacalin-agarose. The glycopeptides bound to Jacalin-agarose and those unbound were treated with alkaline borohydride, and the released O-glycans were fractionated by Bio-Gel P-4 filtration. Sequential glycosidase digestion of the O-glycans, with or without pretreatment by fucosidase or neuraminidase, revealed the following conclusions. 1) Leukosialin from HL-60 cells contains about 1-2 poly-N-acetyllactosaminyl O-glycan chains/molecule. 2) About 50% of these poly-N-acetyllactosaminyl O-glycans contain sialyl Le(x) termini, NeuNAc alpha 2-->3Gal beta 1-->4 (Fuc alpha 1-->3)GlcNAc beta 1-->R. The amount of sialyl Le(x) structure in leukosialin is roughly equivalent to that on cell surfaces of HL-60 cells. 3) Leukosialin from K562 cells, on the other hand, contains no detectable amount of poly-N-acetyllactosaminyl O-glycans. 4) The presence of poly-N-acetyllactosamine in O-glycans is dependent on the core 2 beta 1,6-N-acetylglucosaminyl transferase. 5) Jacalin-agarose binds to sialylated small oligosaccharides such as NeuNAc alpha 2-->3Gal beta 1-->3(NeuNAc alpha 2-->6) GalNAc but not the hexasaccharide NeuNAc alpha 2-->3Gal beta 1-->3(NeuNAc alpha 2-->3Gal beta 1-->4GlcNAc beta 1-->6) GalNAc. These results indicate that the formation of polylactosaminyl O-glycans and sialyl Le(x) structure in O-glycans is dependent on the core 2 formation.  相似文献   

4.
The carbohydrate chains linked to human kappa-casein from mature milk were released by alkaline borohydride treatment as reduced oligosaccharides. The neutral oligosaccharides of lower molecular weight were fractionated and purified by gel filtration and preparative thin layer chromatographies. Seven neutral oligosaccharides (a di- (0.5%), two tetra- (30.5%), two penta- (5.4%) and two hexasaccharide alditols (10.9%] were obtained in homogeneity, and followed by methylation analysis with gas-liquid chromatography-mass spectrometry and by anomer analysis with 13C nuclear magnetic resonance. Their chemical structures were identified to be Gal beta 1----3GalNAc-ol (I), Gal beta 1----3[Gal beta 1----4GlcNAc beta 1----6]GalNAc-ol (II), Gal beta 1----3[Fuc alpha 1----4GlcNAc beta 1----6]GalNAc-ol (III), GlcNAc beta 1----3/6Gal beta 1----3[Gal beta 1----4GlcNAc beta 1----6]GalNAc-ol (IV), GlcNAc beta 1----3/6Gal beta 1----3[Fuc alpha 1----4GlcNAc beta 1----6]GalNAc-ol (V), Fuc alpha 1----4GlcNAc beta 1----3/6Gal beta 1----3[Gal beta 1----4GlcNAc beta 1----6]GalNAc-ol (VI) and Fuc alpha 1----4GlcNAc beta 1----3/6Gal beta 1----3[Fuc alpha 1----4GlcNAc beta 1----6]GalNAc-ol (VII). Five oligosaccharide alditols (III-VII) were the novel carbohydrate chains of kappa-casein from mammalian milk.  相似文献   

5.
T Endo  D Groth  S B Prusiner  A Kobata 《Biochemistry》1989,28(21):8380-8388
Prion proteins from humans and rodents contain two consensus sites for asparagine-linked glycosylation near their C-termini. The asparagine-linked oligosaccharides of the scrapie isoform of the hamster prion protein (PrP 27-30) were released quantitatively from the purified molecule by hydrazinolysis followed by N-acetylation and NaB3H4 reduction. The radioactive oligosaccharides were fractionated into one neutral and three acidic oligosaccharide fractions by anion-exchange column chromatography. All oligosaccharides in the acidic fractions could be converted to neutral oligosaccharides by sialidase digestion. Structural studies on these oligosaccharides including sequential exoglycosidase digestion in combination with methylation analysis revealed that PrP 27-30 contains a mixture of bi-, tri-, and tetraantennary complex-type sugar chains with Man alpha 1----6(GlcNAc beta 1----4)(Man alpha 1----3)Man beta 1----4GlcNAc beta 1----4-(Fuc alpha 1----6)GlcNAc as their core. Variation is produced by the different combination of the oligosaccharides Gal beta 1----4GlcNAc beta 1----, Gal beta 1----4(Fuc alpha 1----3)GlcNAc beta 1----, GlcNAc beta 1----, Sia alpha 2----3Gal beta 1----4GlcNAc beta 1----, and Sia alpha 2----6Gal beta 1----4GlcNAc beta 1---- in their outer chain moieties. When both asparagine-linked consensus sites are glycosylated, the diversity of oligosaccharide structures yields over 400 different forms of the scrapie prion protein. Whether these diverse asparagine-linked oligosaccharides participate in scrapie prion infectivity or modify the function of the cellular prion protein remains to be established.  相似文献   

6.
Nonspecific cross-reacting antigen-2 (NCA-2) is a glycoprotein purified from meconium as a closely correlated entity with carcinoembryonic antigen (CEA). As in the case of CEA, only asparagine-linked sugar chains are included in NCA-2. In order to elucidate the structural characteristics of the sugar chains of NCA-2, they were quantitatively released from the polypeptide backbone by hydrazinolysis and reduced with NaB3H4 after N-acetylation. The radioactive oligosaccharides were fractionated by paper electrophoresis, serial chromatography on immobilized lectin columns, and Bio-Gel P-4 (under 400 mesh) column chromatography. Structures of the oligosaccharides were estimated from the data of the binding specificities of immobilized lectin columns and the effective size of each oligosaccharide determined by passing through a Bio-Gel P-4 column and were then confirmed by endo-beta-galactosidase digestion, sequential digestion with exoglycosidases with different aglycon specificities, and methylation analysis. NCA-2 contains a similar number (27 mol) of sugar chains in one molecule compared with CEA (24-26 mol). However, all sugar chains of NCA-2 were complex-type in contrast to CEA, approximately 8% of the sugar chains of which were high mannose-type (Yamashita, K., Totani, K., Kuroki, M., Matsuoka, Y., Ueda, I., and Kobata, A. (1987) Cancer Res. 47, 3451-3459). About 80% of the oligosaccharides from NCA-2 contain bisecting N-acetylglucosamine residues, and the percent molar ratio of mono-, bi, tri, and tetraantennary oligosaccharides was 2:14:57:27. (+/- Fuc alpha 1----2)Gal beta 1----4(+/- Fuc alpha 1----3)GlcNAc, (+/- Fuc alpha 1----2)Gal beta 1----3(+/- Fuc alpha 1----4)GlcNAc, (+/- Fuc alpha 1----2)Gal beta 1----4(+/- Fuc alpha 1----3)GlcNAc beta 1---- 3Gal beta 1----4GlcNAc, (+/- Fuc alpha 1----2)Gal beta 1----3(+/- Fuc alpha 1----4)GlcNAc beta 1---- 3Gal beta 1----4GlcNAc, and GalNAc beta 1----3Gal beta 1----3GlcNAc beta 1----3Gal beta 1----4GlcNAc were found as their outer chain moieties. Approximately 60% of the oligosaccharides from NCA-2 contain the Gal beta 1----4 or 3GlcNAc beta 1----3Gal beta 1----4GlcNAc beta 1----group in their outer chains.  相似文献   

7.
The carbohydrate-binding specificity of Aleuria aurantia lectin was investigated by analyzing the behavior of a variety of fucose-containing oligosaccharides on an A. aurantia lectin-Sepharose column. Studies with complex-type oligosaccharides obtained from various glycoproteins by hydrazinolysis and their partial degradation fragments indicated that the presence of the alpha-fucosyl residue linked at the C-6 position of the proximal N-acetylglucosamine moiety is indispensable for binding to the lectin column. Binding was not affected by the structures of the outer chain moieties nor by the presence of the bisecting N-acetylglucosamine residue. These results indicated that A. aurantia lectin-Sepharose is useful for the group separation of mixtures of complex-type asparagine-linked sugar chains. Studies of glycosylated Bence Jones proteins indicated that this procedure is also applicable to intact glycoproteins. The behavior of oligosaccharides isolated from human milk and the urine of patients with fucosidosis indicated that the oligosaccharides with Fuc alpha 1----2Gal beta 1----4GlcNAc and Gal beta 1----4(Fuc alpha 1----3)GlcNAc groups interact with the lectin, but less strongly than complex-type sugar chains with a fucosylated core. Lacto-N-fucopentaitol II, which has a Gal beta 1----3(Fuc alpha 1----4)GlcNAc group, interacts less strongly than the above two groups with the matrix. Oligosaccharides with Fuc alpha 1----2Gal beta 1----3GlcNAc and Gal beta 1----4GlcNAc beta 1----3Gal beta 1----4(Fuc alpha 1----3)GlcNAc groups showed almost no interaction with the matrix.  相似文献   

8.
The structures of the sugar chains present in two human monoclonal IgM molecules purified from the serum of a patient with Waldenstr?m's macroglobulinemia have been determined. The asparagine-linked sugar chains were liberated as oligosaccharides by hydrazinolysis and labeled by reduction with NaB3H4 after N-acetylation. Their structures were studied by serial lectin column chromatography and sequential exoglycosidase digestion in combination with methylation analysis. These two IgM's were shown to contain almost the same sugar chains. The sugar chains were a mixture of a series of high-mannose-type and biantennary complex-type oligosaccharides. The complex-type oligosaccharides contain Man alpha 1----6(+/- GlcNAc beta 1----4)(Man alpha 1----3)Man beta 1----4GlcNAc beta 1----4(Fuc alpha 1----6)GlcNAc as their core and GlcNAc beta 1----, Gal beta 1----4GlcNAc beta 1---- and Neu5Ac alpha 2----6Gal beta 1----4GlcNAc beta 1---- groups in their outer chain moieties.  相似文献   

9.
Glycoprotein 71 from Friend murine leukemia virus was digested with proteases and the glycopeptides obtained were isolated and assigned, by amino acid sequencing, to the eight N-glycosylated asparagines in the molecule; only Asn334 and Asn341 could not be separated. The oligosaccharides liberated from each glycopeptide by endo-beta-N-acetylglucosaminidase H, or by peptide-N4-(N-acetyl-beta-glucosaminyl)asparagine amidase F, were fractionated and subjected to structural analysis by one- and two-dimensional 1H NMR, as well as by methylation/gas-liquid-chromatography/mass-fragmentography. At each glycosylation site, the substituents were found to be heterogeneous including, at Asn334/341 and Asn410, substitution by different classes of N-glycans: oligomannosidic oligosaccharides, mainly Man alpha 1----6(Man alpha 1----3)Man alpha 1----6(Man alpha 1----3)Man beta 1----4GlcNAc beta 1----4GlcNAc beta 1----, were detected at Asn168, Asn334/341 and Asn410. Hybrid species, partially sialylated, intersected and (proximally) funcosylated Man alpha 1----6(Man alpha 1----3)Man alpha 1----6 and Man alpha 1----3Man alpha 1----6 and Man alpha 1----3Man alpha 1----6(Gal beta 1----4GlcNAc beta 1----2Man alpha 1----3)Man beta 1----4GlcNAc beta 1----4GlcNAc beta 1----, were found at Asn12, as previously published [Schlüter, M., Linder, D., Geyer, R., Hunsmann, H., Schneider, J. & Stirm, S. (1984) FEBS Lett. 169, 194-198] and at Asn334/341. N-Acetyllactosaminic glycans, mainly partially intersected and fucosylated NeuAc alpha 2----3 or Gal alpha 1----3Gal beta 1----4GlcNAc beta 1----2Man alpha 1----6(NeuAc alpha 2----6 or NeuAc alpha 2----3Gal-beta 1----4GlcNAc beta 1----2Man alpha 1----3)Man beta 1----4GlcNac beta 1----4GlcNAc beta 1---- with some bifurcation at ----6Man alpha 1----6, were obtained from Asn266, Asn302, Asn334/341, Asn374 and Asn410. In addition, Thr268, Thr277, Thr279, Thr304/309, as well as Ser273 and Ser275, were found to be O-glycosidically substituted by Gal beta 1----3GalNAc alpha 1----, monosialylated or desialylated at position 3 of Gal or/and position 6 of GalNAc.  相似文献   

10.
Rat liver Golgi apparatus are shown to have a CMP-N-acetylneuraminate: N-acetylglucosaminide (alpha 2----6)-sialyltransferase which catalyzes the conversion of the human milk oligosaccharide LS-tetrasaccharide-a (NeuAc alpha 2----3Gal beta 1---- 3GlcNAc beta 1----3Gal beta 1----4Glc) to disialyllacto -N- tetraose containing the terminal sequence: (formula: see text) found in N-linked oligosaccharides of glycoproteins. The N-acetylglucosaminide (alpha 2----6)-sialyltransferase has a marked preference for the sequence NeuAc alpha 2----3-Gal beta 1---- 3GlcNAc as an acceptor substrate. Thus, the order of addition of the two sialic acids in the disialylated structure shown above is proposed to be first the terminal sialic acid in the NeuAc alpha 2----3Gal linkage followed by the internal sialic acid in the NeuAc alpha 2---- 6GlcNAc linkage. Sialylation in vitro of the type 1 branches (Gal beta 1---- 3GlcNAc -) of the N-linked oligosaccharides of asialo prothrombin to produce the same disialylated sequence is also demonstrated.  相似文献   

11.
Sulfated N-linked carbohydrate chains in porcine thyroglobulin   总被引:3,自引:0,他引:3  
N-linked carbohydrate chains of porcine thyroglobulin were released by the hydrazinolysis procedure. The resulting mixture of oligosaccharide-alditols was fractionated by high-voltage paper electrophoresis, the acidic fractions were further separated by high-performance liquid chromatography on Lichrosorb-NH2, and analyzed by 500-MHz 1H-NMR spectroscopy and, partially, by permethylation analysis. Of the acidic oligosaccharide-alditols, the following sulfated carbohydrate chains could be identified: NeuAc alpha 2----6Gal beta 1----4GlcNAc beta 1----2Man alpha 1----3[(SO3Na----3)Gal beta 1----4GlcNAc beta1----2-Mana alpha 1----6]Man beta 1----4GlcNAc beta 1----4[Fuc alpha 1----6]GlcNAc-ol and NeuAc alpha 2----6Gal beta 1----4(SO3Na----)0-1 GlcNAc beta 1----2-Man alpha 1----3[NeuAc alpha 2----6Gal beta 1----4(SO3Na----6)1-0GlcNAc beta 1----2Man alpha 1----6]Man beta 1----4GlcNAc beta 1----4[Fuc alpha 1----6]GlcNAc- ol. The sulfated structural elements for porcine thyroglobulin form novel details of N-linked carbohydrate chains. They contribute to the fine structure of these oligosaccharides and are another type of expression of microheterogeneity.  相似文献   

12.
Antibodies against sialyloligosaccharides coupled to protein   总被引:1,自引:0,他引:1  
The beta-(p-aminophenyl)ethylamine derivatives of sialyloligosaccharides can be coupled to proteins via their phenylisothiocyanate intermediates under conditions that preserve labile sugar linkages. Bovine serum albumin containing 10 to 40 mol of oligosaccharides/mol of protein and keyhole limpet hemocyanin containing 1,100 mol of oligosaccharide/mol of protein have been prepared with the following oligosaccharides: Neu-NAc alpha 2-3Gal beta 1-4Glc, NeuNAc alpha 2-6Gal beta 1-4Glc, Neu-NAc alpha 2-6Gal beta 1-4GlcNAc beta 1-4Glc, Gal beta 1-3[Neu-NAc alpha 2-6]GlcNAc beta 1-4Glc, and NeuNAc alpha 2-3Gal- beta 1-3[NeuNAc alpha 2-6]GlcNAc beta 1-4Glc. Rabbits immunized with these synthetic glycoproteins produce antibodies directed against the oligosaccharides. The specificities of these antibodies are determined by comparing inhibitory activities of structurally related oligosaccharides in radioimmunoassay and by double diffusion analysis in agarose gels using oligosaccharide-protein conjugates as precipitating antigens. The antibodies distinguish positional isomers of sialic acid.  相似文献   

13.
The proper glycosylation of erythropoietin is essential for its function in vivo. Human erythropoietins were isolated from Chinese hamster ovary cells transfected with a human erythropoietin cDNA and from human urine. Carbohydrate chains attached to these proteins were isolated and fractionated by anion-exchange high performance liquid chromatography (HPLC) and HPLC employing a Lichrosorb-NH2 column. The structures of fractionated saccharides were analyzed by fast atom bombardment-mass spectrometry and methylation analysis before and after treatment with specific exoglycosidases. Both erythropoietins were found to contain one O-linked oligosaccharide/mol of the proteins, and its major component was elucidated to be NeuNAc alpha 2----3Gal beta 1----3(NeuNAc alpha 2----6)GalNAcOH (where NeuNAc represents N-acetylneuraminic acid) in both proteins. The N-linked saccharides of recombinant erythropoietin were found to consist of biantennary (1.4% of the total saccharides), triantennary (10%), triantennary with one N-acetyllactosaminyl repeat (3.5%), tetraantennary (31.8%), and tetraantennary with one (32.1%), two (16.5%), or three (4.7%) N-acetyllactosaminyl repeats. All of these saccharides are sialylated by 2----3-linkages. Tetraantennary with or without polylactosaminyl units are mainly present as disialosyl or trisialosyl forms, and these structures exhibit the following unique features. alpha 2----3-Linked sialic acid and N-acetyllactosaminyl repeats are selectively present in the side chains attached to C-6 and C-2 of 2,6-substituted alpha-mannose and C-4 of 2,4-substituted alpha-mannose. We have also shown that the carbohydrate moiety of urinary erythropoietin is indistinguishable from recombinant erythropoietin except for a slight difference in sialylation, providing the evidence that recombinant erythropoietin is valuable for biological as well as clinical use.  相似文献   

14.
The purification and partial characterization of epitectin (previously called Ca antigen) from a human cancer cell line is described. This glycoprotein, which is expressed on a wide range of human tumors and certain specialized normal epithelia, can be detected using monoclonal antibodies, Ca1, Ca2, and Ca3. The purified glycoprotein had a high density (1.40 g/ml) on isopycnic centrifugation indicating a high carbohydrate content. The molecular mass of epitectin as determined by size-exclusion chromatography ranged from 1.0 to 1.5 x 10(6) daltons. However, the purified epitectin gave two bands of apparent molecular weight 390,000 and 350,000 on polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The isoelectric points of epitectin and asialoepitectin were found to be 5.3-5.4 and 6.8, respectively. The oligosaccharides were isolated from metabolically labeled epitectin by alkaline borohydride treatment and their structures established based on high performance liquid chromatography and paper electrophoretic migration, sugar composition, the results of sequential exoglycosidase treatment, periodate oxidation, and methylation analysis. The structures of the three major fractions, which together account for about 80% of the radioactivity, were assigned as NeuNAc alpha 2----3Gal beta 1----(NeuNAc alpha 2----6)3GalNAc(OH), NeuNAc alpha 2----3Gal beta 1----3GalNAc(OH), and Gal beta 1----3 GalNAc(OH). The structures of the minor fractions were tentatively assigned as NeuNAc----Gal(NeuNAc----Gal----GlcNAc)----GalNAc(OH), Gal beta 1----(NeuNAc alpha 2----6)3GalNAc(OH), NeuNAc alpha 2----6GalNAc(OH), and GalNAc(OH). It is proposed that the protein sequence and/or the distribution of the saccharides on the protein core are the determinants on epitectin that are recognized by the Ca antibodies.  相似文献   

15.
Alkaline phosphatase purified from human placenta contains a single asparagine-linked sugar chain in one molecule. The sugar chain was quantitatively liberated as radioactive oligosaccharides from the polypeptide moiety by hydrazinolysis followed by N-acetylation and NaB3H4 reduction, and separated by paper electrophoresis into one neutral and two acidic fractions. By a combination of sequential exoglycosidase digestion and methylation analysis, the structures of oligosaccharides in the neutral fraction were confirmed to be as follows: Gal beta 1----4GlcNAc beta 1----2Man alpha 1----6(Gal beta 1----4GlcNAc beta 1----2Man alpha 1----3)Man beta 1----4GlcNAc beta 1----4(+/- Fuc alpha 1----6)GlcNAc. The acidic oligosaccharide fractions were mixtures of mono- and disialyl derivatives of the neutral fraction. All the sialic acid residues of the sugar chains occur as the NeuAc alpha 2----3Gal group. In the case of monosialyl derivatives, the N-acetylneuraminic acid was exclusively linked to the Man alpha 1----3 arm.  相似文献   

16.
New neutral oligosaccharides from cow colostrum kappa-casein were identified and characterized by 500-MHz 1H-NMR spectroscopy. Their structures are Gal beta(1----3)GalNAc-ol, Gal beta(1----3)[GlcNAc beta(1----6)]GalNAc-ol, Gal beta(1----3)[Gal beta(1----4)GlcNAc beta(1----6)]GalNAc-ol, Gal beta(1----3)[Fuc alpha(1----3)[Gal beta(1----4)]GlcNAc beta(1----6)]GalNAc-ol. The tetrasaccharide and the cow colostrum kappa-caseinoglycopeptide which contains this oligosaccharide inhibit the hemagglutination of blood group I human erythrocytes. In cow mature milk only the disaccharide is characterized. The variability of these neutral oligosaccharides in cow kappa-casein as a function of time after calving is studied.  相似文献   

17.
The distribution along the polypeptide of the carbohydrate units of two major calf thyroid cell surface glycoproteins, GP-1 and GP-3, was obtained from a study of their glycopeptides obtained after Pronase digestion. The GP-3 molecule (Mr = 20,000) yielded two large glycopeptides (Mr = 9,500 and 7,000) in equimolar amounts which each consisted of one N-linked (Mr = 5,400) and several small O-linked oligosaccharides accounting for a total of nine carbohydrate attachment sites in a 27-amino acid residue segment of the peptide chain. The Pronase treatment of GP-1 (Mr = 100,000) revealed the presence of a large protease-resistant fragment (Mr = 50,000) which contained 34 carbohydrate units (eight N-linked and 26 O-linked) in a segment of 105 amino acids. In addition to these densely glycosylated peptides (one glycosylation site/3 amino acid residues), small glycopeptides with polymannose saccharide units were found in the digests of both proteins. The occurrence of repeating N-acetyllactosamine sequences in the N-linked carbohydrate units of GP-1 and GP-3 was suggested by the composition and size of the oligosaccharides released by hydrazinolysis and was demonstrated by endo-beta-galactosidase treatment. The cleavage products from digestion with this enzyme were identified as NeuAc alpha 2----6Gal beta 1----4GlcNAc beta 1----3Gal, Gal alpha 1----3Gal beta 1----4GlcNAc beta 1----3Gal, Gal beta 1----4GlcNAc beta 1----3Gal, and GlcNAc beta 1----3Gal with the tetrasaccharides constituting the predominant species. The terminal alpha-D-Gal residues accounted for the binding of GP-1 and GP-3 glycopeptides to Bandeiraea simplicifolia I-agarose; concanavalin A-Sepharose affinity chromatography indicated that most of the N-linked carbohydrate units of both glycoproteins contained more than two branches. Difference in the branching on the poly-N-acetyllactosamine sequences of GP-1 and GP-3 was suggested by the finding that only the latter glycoprotein, as well as its glycopeptides, reacted with anti-blood group I antibodies; neither glycoprotein demonstrated blood group i antigenicity. Examination of cultured thyroid follicular cells revealed that both I and i determinants were present at the cell surface.  相似文献   

18.
The structure of sialylated carbohydrate units of bronchial mucins obtained from cystic fibrosis patients was investigated by 500-MHz 1H NMR spectroscopy in conjunction with sugar analysis. After subjecting the mucins to alkaline borohydride degradation, sialylated oligosaccharide-alditols were isolated by anion-exchange chromatography and fractionated by high performance liquid chromatography. Five compounds could be obtained in a rather pure state; their structures were established as the following: A-1, NeuAc alpha(2----3)Gal beta(1----4) [Fuc alpha(1----3)]GlcNAc beta(1----3)Gal-NAc-ol; A-2, NeuAc alpha(2----3)Gal beta(1----4)GlcNAc beta(1----6)-[GlcNAc beta (1----3)]GalNAc-o1; A-3, NeuAc alpha(2----3)Gal beta-(1----4)[Fuc alpha(1----3)]GlcNAc beta(1----3)Gal beta(1----3) GalNAc-o1; A-4, NeuAc alpha(2----3)Gal beta(1----4)[Fuc alpha(1----3)]Glc-NAc NAc beta(1----6)[GlcNAc beta(1----3)]GalNAc-o1; A-6,NeuAc alpha-(2----3) Gal beta(1----4)[Fuc alpha(1----3)]GlcNAc beta(1----6)[Gal beta-(1----4) GlcNAc beta(1----3)]GalNAc-o1. The simultaneous presence of sialic acid in alpha(2----3)-linkage to Gal and fucose in alpha(1----3)-linkage to GlcNAc of the same N-acetyllactosamine unit could be adequately proved by high resolution 1H NMR spectroscopy. This sequence constitutes a novel structural element for mucins.  相似文献   

19.
The carbohydrate-binding specificity of a novel plant lectin isolated from the seeds of Tetracarpidium conophorum (Nigerian walnut) has been studied by quantitative hapten inhibition assays and by determining the behavior of a number of oligosaccharides and glycopeptides on lectin-Sepharose affinity columns. The Tetracarpidium lectin shows preference for simple, unbranched oligosaccharides containing a terminal Gal beta 1----4GlNAc sequence over a Gal beta 1----3GlcNAc sequence and substitution by sialic acid or fucose of the terminal galactose residue, the subterminal N-acetylglucosamine or more distally located sugar residues of oligosaccharides reduce binding activity. Branched complex-type glycans containing either Gal beta 1----4GlcNAc or Gal beta 1----3GlcNAc termini bind with higher affinity than simpler oligosaccharides. The lectin shows highest affinity for a tri-antennary glycan carrying Gal beta 1----4GlcNAc substituents on C-2 and C-4 of Man alpha 1----3 and C-2 of Man alpha 1----6 core residues. Bi- and tri-glycans lacking this branching pattern bind more weakly. Tetra-antennary glycans and mono- and di-branched hybrid-type glycans also bind weakly to the immobilized lectin. Therefore, Tetracarpidium lectin complements the binding specificities of well-known lectins such as Datura stramonium agglutinin, Phaseolus vulgaris agglutinin, and lentil lectin and will be a useful additional tool for the identification and separation of complex-type glycans.  相似文献   

20.
Using 500-MHz 1H NMR spectroscopy we have investigated the branch specificity that bovine colostrum CMP-NeuAc:Gal beta 1----4GlcNAc-R alpha 2----6-sialyltransferase shows in its sialylation of bi-, tri-, and tetraantennary glycopeptides and oligosaccharides of the N-acetyllactosamine type. The enzyme appears to highly prefer the galactose residue at the Gal beta 1----4GlcNAc beta 1----2Man alpha 1----3 branch for attachment of the 1st mol of sialic acid in all the acceptors tested. The 2nd mol of sialic acid becomes linked mainly to the Gal beta 1----4GlcNAc beta 1----2Man alpha 1----6 branch in bi- and triantennary substrates, but this reaction invariably proceeds at a much lower rate. Under the conditions employed, the Gal beta 1----4GlcNAc beta 1----6Man alpha 1----6 branch is extremely resistant to alpha 2----6-sialylation. A higher degree of branching of the acceptors leads to a decrease in the rate of sialylation. In particular, the presence of the Gal beta 1----4GlcNAc beta 1----6Man alpha 1----6 branch strongly inhibits the rate of transfer of both the 1st and the 2nd mol of sialic acid. In addition, it directs the incorporation of the 2nd mol into tetraantennary structures toward the Gal beta 1----4GlcNAc beta 1----4Man alpha 1----3 branch. In contrast, the presence of the Gal beta 1----4GlcNAc beta 1----4Man alpha 1----3 branch has only minor effects on the rates of sialylation and, consequently, on the branch preference of sialic acid attachment. Results obtained with partial structures of tetraantennary acceptors indicate that the Man beta 1----4GlcNAc part of the core is essential for the expression of branch specificity of the sialyltransferase. The sialylation patterns observed in vivo in glycoproteins of different origin are consistent with the in vitro preference of alpha 2----6-sialyltransferase for the Gal beta 1----4GlcNAc beta 1----2Man alpha 1----3 branch. Our findings suggest that the terminal structures of branched glycans of the N-acetyllactosamine type are the result of the complementary branch specificity of the various glycosyltransferases that are specific for the acceptor sequence Gal beta 1----4GlcNAc-R.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号