首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
IL-21, the most recently described member of the common gamma-chain cytokine family, is produced by activated CD4 T cells, whereas CD8 T cells express the IL-21 receptor. To investigate a possible role for IL-21 in the priming of naive CD8 T cells, we examined responses of highly purified naive OT-I CD8 T cells to artificial APCs displaying Ag and B7-1 on their surface. We found that IL-21 enhanced OT-I clonal expansion and supported development of cytotoxic effector function. High levels of IL-2 did not support development of effector functions, but IL-2 was required for optimal responses in the presence of IL-21. IL-12 and IFN-alpha have previously been shown to support naive CD8 T cell differentiation and acquisition of effector functions through a STAT4-dependent mechanism. Here, we show that IL-21 does not require STAT4 to stimulate development of cytolytic activity. Furthermore, IL-21 fails to induce IFN-gamma or IL-4 production and can partially block IL-12 induction of IFN-gamma production. CD8 T cells that differentiate in response to IL-21 have a distinct surface marker expression pattern and are characterized as CD44(high), PD-1(low), CD25(low), CD134(low), and CD137(low). Thus, IL-21 can provide a signal required by naive CD8 T cells to differentiate in response to Ag and costimulation, and the resulting effector cells represent a unique effector phenotype with highly effective cytolytic activity, but deficient capacity to secrete IFN-gamma.  相似文献   

2.
Successful Ag activation of naive T helper cells requires at least two signals consisting of TCR and CD28 on the T cell interacting with MHC II and CD80/CD86, respectively, on APCs. Recent evidence demonstrates that a third signal consisting of proinflammatory cytokines and reactive oxygen species (ROS) produced by the innate immune response is important in arming the adaptive immune response. In an effort to curtail the generation of an Ag-specific T cell response, we targeted the synthesis of innate immune response signals to generate Ag-specific hyporesponsiveness. We have reported that modulation of redox balance with a catalytic antioxidant effectively inhibited the generation of third signal components from the innate immune response (TNF-alpha, IL-1beta, ROS). In this study, we demonstrate that innate immune-derived signals are necessary for adaptive immune effector function and disruption of these signals with in vivo CA treatment conferred Ag-specific hyporesponsiveness in BALB/c, NOD, DO11.10, and BDC-2.5 mice after immunization. Modulating redox balance led to decreased Ag-specific T cell proliferation and IFN-gamma synthesis by diminishing ROS production in the APC, which affected TNF-alpha levels produced by CD4(+) T cells and impairing effector function. These results demonstrate that altering redox status can be effective in T cell-mediated diseases such as autoimmune diabetes to generate Ag-specific immunosuppression because it inhibits the third signal necessary for CD4(+) T cells to transition from expansion to effector function.  相似文献   

3.
Naive CD8 T cells that respond in vivo to Ag and costimulation in the absence of a third signal, such as IL-12, fail to develop cytolytic function and become tolerized. We show in this study that CD8 T cells purified from TCR transgenic mice and stimulated in vitro in the presence or absence of IL-12 form conjugates with specific target cells, increase intracellular Ca2+, and undergo degranulation to comparable extents. Perforin is also expressed at comparable levels in the absence or presence of a third signal, but expression of granzyme B depends upon IL-12. Levels of granzyme B also correlate strongly with the cytolytic activity of cells responding in vivo. In contrast, an increase in CD107a (lysosomal-associated membrane protein 1) expression resulting from degranulation cannot distinguish in vivo generated lytic effector cells from tolerized, noncytolytic cells. Thus, it appears that cells rendered tolerant as a result of stimulation in the absence of a third signal fail to lyse target cells because they are "shooting blanks."  相似文献   

4.
The role of different levels of costimulation in conjunction with signal 1 in the activation of memory CD8+ T cells remains elusive. In this study, we demonstrate, in a mouse model with the influenza nucleoprotein epitope NP68, that mouse early memory (effector/memory) CD8+ T cells that were generated with high levels of costimulation have reduced CTL functionality compared with those that were generated with low levels of costimulation. This reduction is associated with increased phosphorylation of the negative regulatory site 292 on Zap70 and a decrease in granzyme B levels. Furthermore, we show that enhanced costimulation reduces proliferation and cytokine production of effector/memory CD8+ T cells in response to intermediate and weak TCR stimulation, in contrast to previously described positive effects of costimulation on naive CD8+ T cells. This effect is associated with the expression of ICAM-1 on APCs. Together, our results indicate that enhanced costimulation can lead to reduced functionality in effector/memory CD8+ T cells. This compromised effector function of effector/memory CD8+ T cells in response to high levels of costimulation can have important implications for designing immunotherapeutic strategies to enhance immune responses.  相似文献   

5.
Surgical treatment of colorectal cancer is associated with postoperative immunosuppression, which might facilitate dissemination of tumor cells and outgrowth of minimal residual disease/(micro) metastases. Minimal residual disease has been shown to be of prognostic relevance in colorectal cancer. Therefore, stimulation of (anti-tumor) immune responses may be beneficial in the prevention of metastases formation. Important anti-tumor effector cells, which serve this function, are natural killer (NK) cells, CD8+ lymphocytes (CTL), dendritic cells (DC) and macrophages. In this review the immunomodulating properties of IFN-alpha are discussed, with a particular focus on perioperative stimulation of immune function in cancer patients. IFN-alpha is known to enhance innate immune functions such as stimulation of NK cells, transition from innate to adaptive responses (activation of DC) and regulating of CD8+ CTL activity and memory. Moreover, it exerts direct antitumor effects by regulating apoptosis and cell cycle. In several clinical trials, perioperative administration of IFN-alpha has indeed been shown to improve T cell responsiveness, prevent impairment of NK cell cytotoxicity and increase expression of activation markers on NK, T and NKT cells. In a clinical pilot study we showed in colorectal cancer patients that received perioperative IFN-alpha enhanced activation markers on T cells and NK cells, combined with better-preserved T cell function as indicated by phytohemaggluttinin skin tests. In the liver of these patients significantly more CD8+ T cells were found. In conclusion, IFN-alpha provides an effective adjuvant in several forms of cancer and improves several postoperative immune functions in perioperative administration. However, larger clinical trials are necessary to investigate effects on disease-free and overall survival.  相似文献   

6.
The rejection of H-2b parental bone marrow graft by lethally irradiated F1 recipients, that is known as hybrid resistance (HR), is a multistep process. In a first step a 5-fluorouracil (5-FU)-sensitive T cell recognizes the parental bone marrow cells and stimulates a macrophage-like cell to secrete IFN-alpha/beta (recognition phase). IFN-alpha/beta in turn activates a cyclophosphamide-sensitive NK-like cell that is the effector cell for HR (effector phase). In a previous paper we described that HR is specifically abrogated by the pretreatment of the F1 recipient with H-2b parental spleen cells. This abrogation is due to a Thy-1+CD5+CD4+CD8- nylon adherent suppressor cell of F1 origin. The aim of the present work was to study during which of the different phases of HR the activity of the suppressor cell is exerted. Our results showed that abrogation of HR in (C57BL/6 x C3H)F1 (B6C3F1) hybrids pretreated with B6 spleen cells results from: 1) the suppression of the 5-FU-sensitive T cell; 2) the suppression of the cyclophosphamide-sensitive NK-like cell; and 3) the disappearance of a humoral factor that is present in the serum of normal B6C3F1 hybrids and which seems to be involved in the effector phase of HR. The 5-FU-sensitive T cell is the only target of Thy-1+CD5+CD4+CD8- suppressor cell. The mechanisms responsible for the suppression of the NK-like effector cell and the disappearance of the humoral factor are discussed.  相似文献   

7.
Rejection of ectopic heart transplants expressing OVA requires OVA-specific CD4 and CD8 T cells. In the absence of CD4 T cells, OVA-specific CD8 T cells proliferate and migrate to the graft, but fail to develop cytolytic functions. With CD4 T cells present, clonal expansion of the CD8 T cells is only marginally increased but the cells now develop effector functions and mediate rapid graft rejection. In the presence of CD4 T cells, Ag and B7 levels do not increase on dendritic cells but IL-12 production is up-regulated, and this requires CD154 expression on the CD4 T cells. OVA-specific CD8 T cells lacking the IL-12 receptor fail to differentiate or mediate graft rejection even when CD4 T cells are present. Thus, CD4 T cells condition dendritic cells by inducing the production of IL-12, which is needed as the "third signal" for CD8 T cell differentiation and avoidance of tolerance.  相似文献   

8.
9.
During the priming phase of an antitumor immune response, CD8(+) T cells undergo a program of differentiation driven by professional APCs in secondary lymphoid organs. This leads to clonal expansion and acquisition both of effector functions and a specific adhesion molecule pattern. Whether this program can be reshaped during the effector phase to adapt to the effector site microenvironment is unknown. We investigated this in murine brain tumor models using adoptive transfer of tumor-specific CD8(+) T cells, and in spontaneous immune responses of patients with malignant glioma. Our data show proliferation of Ag-experienced tumor-specific T cells within the brain parenchyma. Moreover, CD8(+) T cells further differentiated in the brain, exhibiting enhanced IFN-gamma and granzyme B expression and induction of alpha(E)(CD103)beta(7) integrin. This unexpected integrin expression identified a subpopulation of CD8(+) T cells conditioned by the brain microenvironment and also had functional consequences: alpha(E)(CD103)beta(7)-expressing CD8(+) T cells had enhanced retention in the brain. These findings were further investigated for CD8(+) T cells infiltrating human malignant glioma; CD8(+) T cells expressed alpha(E)(CD103)beta(7) integrin and granzyme B as in the murine models. Overall, our data indicate that the effector site plays an active role in shaping the effector phase of tumor immunity. The potential for local expansion and functional reprogramming should be considered when optimizing future immunotherapies for regional tumor control.  相似文献   

10.
Full activation of naive CD8 T cells requires Ag, costimulation, and a third signal that can be provided by IL-12. Brief exposure (6 h) to Ag and B7-1 is sufficient to stimulate multiple rounds of cell division, but clonal expansion and development of effector function are minimal even when signal 3 is present. Full activation instead requires concerted signaling by Ag, B7-1, and IL-12 for greater than 40 h. Thus, the gene expression program required for cell division can be initiated by brief interaction with Ag and costimulation, but maintaining the expression of the genes needed for survival and effector function requires prolonged signaling by a signal 3 cytokine in concert with Ag and costimulation.  相似文献   

11.
Control of virus infection is mediated in part by major histocompatibility complex (MHC) Class Ia presentation of viral peptides to conventional CD8 T cells. Although important, the absolute requirement for MHC Class Ia-dependent CD8 T cells for control of chronic virus infection has not been formally demonstrated. We show here that mice lacking MHC Class Ia molecules (K(b-/-)xD(b-/-) mice) effectively control chronic gamma-herpesvirus 68 (gammaHV68) infection via a robust expansion of beta2-microglobulin (beta2-m)-dependent, but CD1d-independent, unconventional CD8 T cells. These unconventional CD8 T cells expressed: (1) CD8alphabeta and CD3, (2) cell surface molecules associated with conventional effector/memory CD8 T cells, (3) TCRalphabeta with a significant Vbeta4, Vbeta3, and Vbeta10 bias, and (4) the key effector cytokine interferon-gamma (IFNgamma). Unconventional CD8 T cells utilized a diverse TCR repertoire, and CDR3 analysis suggests that some of that repertoire may be utilized even in the presence of conventional CD8 T cells. This is the first demonstration to our knowledge that beta2-m-dependent, but Class Ia-independent, unconventional CD8 T cells can efficiently control chronic virus infection, implicating a role for beta2-n-dependent non-classical MHC molecules in control of chronic viral infection. We speculate that similar unconventional CD8 T cells may be able to control of other chronic viral infections, especially when viruses evade immunity by inhibiting generation of Class Ia-restricted T cells.  相似文献   

12.
Inducing lymphopenia before adoptive cell transfer can improve the antitumor effect of donor immune cells. It was recently reported that lymphopenic conditions can initiate the differentiation of naive T cells into effector cells. Although T cells require a specific "strong" signal via TCR as well as costimulatory signals during Ag-driven differentiation, there has been little evidence to suggest any requirement for costimulatory signaling for the differentiation of naive T cells in a lymphopenic host. In this study, we demonstrate that naive CD8(+) T cells are indispensable for induction of antitumor effect, and, in addition to Ag-driven differentiation, CD28 signaling is essential for the differentiation of naive CD8(+) T cells into functional effector CTLs during homeostatic proliferation (HP). The systemic administration of IL-2 did not restore the antitumor effect induced by HP in the absence of CD28 signaling. These results suggest that homeostatic cytokines enable CD8(+) T cells to expand and survive, and that TCR and the CD28 signal initiate the differentiation of effector functions. A deeper understanding of the mechanisms underlying enhanced induction of the antitumor immune response with accompanying HP may allow us to more precisely induce enhanced immunity with costimulation signaling and the administration of common gamma-chain cytokines.  相似文献   

13.
Type I interferon (IFN-alpha/beta) is induced rapidly by infection and is well recognised for its crucial role in innate defence. However, it is evident that IFN-alpha/beta also serves as a signal for the generation of adaptive immune responses. In this review, we focus on the involvement of IFN-alpha/beta in the induction of CD8+ T cell responses by cross-priming.  相似文献   

14.
We recently reported that dendritic cells (DC) infected with Mycobacterium tuberculosis (Mtb) produce Th1/IFN-gamma-inducing cytokines, IFN-alpha beta and IL-12. In the present article, we show that maturing Mtb-infected DC express high levels of CCR7 and they become responsive to its ligand CCL21. Conversely, CCR5 expression was rapidly lost from the cell surface following Mtb infection. High levels of CCL3 and CCL4 were produced within 8 h after infection, which is likely to account for the observed CCR5 down-modulation on Mtb-infected DC. In addition, Mtb infection stimulated the secretion of CXCL9 and CXCL10. Interestingly, the synthesis of CXCL10 was mainly dependent on the Mtb-induced production of IFN-alpha beta. Indeed, IFN-alpha beta neutralization down-regulated CXCL10 expression, whereas the expression of CXCL9 appeared to be unaffected. The chemotactic activity of the Mtb-infected DC supernatants was evaluated by migration assays using activated NK, CD4(+), and CD8(+) cells that expressed both CCR5 and CXCR3. Mtb-induced expression of CCL3, CCL4, CXCL9, and CXCL10 was involved in the stimulation of NK and T cell migration. In accordance with the data on the IFN-alpha beta-induced expression of CXCL10, neutralization of IFN-alpha beta significantly reduced the chemotactic activity of the supernatant from Mtb-infected DC. This indicates that IFN-alpha beta may modulate the immune response through the expression of CXCL10, which along with CXCL9, CCL3, and CCL4 participates in the recruitment and selective homing of activated/effector cells, which are known to accumulate at the site of Mtb infection and take part in the formation of the granulomas.  相似文献   

15.
Adaptive CD25(+)CD4(+) regulatory T cells (Treg) can be induced following exposure to alloantigen and may function alongside naturally occurring Treg to suppress allograft rejection when present in sufficient numbers. However, the location of the Treg as they function in vivo and the mechanisms used to control donor-reactive T cells remains ill-defined. In this study, we used a CD8(+) TCR transgenic model of skin allograft rejection to characterize in vivo activity of donor-reactive Treg cells during induction of transplantation tolerance. We demonstrate that, initially after skin transplantation, Treg attenuate the priming of donor-reactive naive CD8(+) T cells in the lymphoid tissue draining the graft site. However, with time, peripheral suppression is overcome despite the continued presence of Treg, resulting in the priming of donor-reactive CD8(+) T cells and graft infiltration by the resultant effector T cells and induction of a "Tc1-like" intragraft gene expression profile. These intragraft effector CD8(+) T cells are then prevented from eliciting rejection by Treg that simultaneously infiltrate the skin allografts, resulting in a failure to generate donor-reactive memory CD8(+) T cells. Overall, these data demonstrate for the first time that donor-reactive Treg can suppress allograft rejection using distinct mechanisms at different sites in vivo with the overall outcome of preventing the generation of donor-reactive memory T cells.  相似文献   

16.
A CD8+ T cell of naive phenotype has multiple career choices during its primary differentiation into an effector cell population. One of these career options is becoming a CD8low T cell. We have previously shown by in vitro studies that CD8low T cells have lost expression of CD8 surface protein and mRNA and are poorly cytolytic. In line with poor cytolytic function, CD8low T cells express low levels of perforin and granzyme B and C, mediators of the granule-exocytosis machinery. However, CD8low T cells express IFN-gamma and substantial amounts of IL-4, the signature cytokines of type 1 and type 2 T-cell polarization, respectively. Here, we argue that the CD8low phenotype is an alternative career choice for any naive CD8+ T cell during primary activation but that the probability of choosing this option is greatly enhanced by both IL-4 and strong activation conditions. CD8low T cells have downregulated CD8 alpha/beta heterodimers and no preferential CD8 alpha/alpha homodimer expression. As shown by anti-CD8 Ab blocking experiments, surface CD8 substantially contributes to the CD8 T cell's effector function (i.e. cytokine expression and cytolytic activity). The distinct effector profile of CD8low T cells gives an example of the complexity of different CD8 T cell careers during primary effector differentiation.  相似文献   

17.
18.
Experimental infection of C57BL/6 mice by Plasmodium yoelii sporozoites induced an increase of CD4-CD8- NK1.1+ TCR alpha beta int cells and a down-regulation of CD4+ NK1.1+ TCR alpha beta int cells in the liver during the acute phase of the infection. These cells showed an activated CD69+, CD122+, CD44high, and CD62Lhigh surface phenotype. Analysis of the expressed TCRV beta segment repertoire revealed that most of the expanded CD4-CD8- (double-negative) T cells presented a skewed TCRV beta repertoire and preferentially used V beta 2 and V beta 7 rather than V beta 8. To get an insight into the function of expanded NK1.1+ T cells, experiments were designed in vitro to study their activity against P. yoelii liver stage development. P. yoelii-primed CD3+ NK1.1+ intrahepatic lymphocytes inhibited parasite growth within the hepatocyte. The antiplasmodial effector function of the parasite-induced NK1.1+ liver T cells was almost totally reversed with an anti-CD3 Ab. Moreover, IFN-gamma was in part involved in this antiparasite activity. These results suggest that up-regulation of CD4-CD8- NK1.1+ alpha beta T cells and down-regulation of CD4+ NK1.1+ TCR alpha beta int cells may contribute to the early immune response induced by the Plasmodium during the prime infection.  相似文献   

19.
CD4+CD25+ T cells play a pivotal role in immunological homeostasis by their capacity to exert immunosuppressive activity. However, the mechanism by which these cells function is still a subject for debate. We previously reported that surface (membrane) TGF-beta produced by CD4+CD25+ T cells was an effector molecule mediating suppressor function. We now support this finding by imaging surface TGF-beta on Foxp3+CD4+CD25+ T cells in confocal fluorescence microscopy. Then, using a TGF-beta-sensitive mink lung epithelial cell (luciferase) reporter system, we show that surface TGF-beta can be activated to signal upon cell-cell contact. Moreover, if such TGF-beta signaling is blocked in an in vitro assay of CD4+CD25+ T cell suppression by a specific inhibitor of TGF-betaRI, suppressor function is also blocked. Finally, we address the role of CTLA-4 in CD4+CD25+ T cell suppression, showing first that whereas anti-CTLA-4 does not block in vitro suppressor function, it does complement the blocking activity of anti-TGF-beta. We then show with confocal fluorescence microscopy that incubation of CD4+CD25+ T cells with anti-CTLA-4- and rB7-1/Fc-coated beads results in accumulation of TGF-beta at the cell-bead contact site. This suggests that CTLA-4 signaling facilitates TGF-beta-mediated suppression by intensifying the TGF-beta signal at the point of suppressor cell-target cell interaction.  相似文献   

20.
TGF-beta1 is a potent immunoregulatory cytokine. However, its impact on the generation and effector function of Ag-specific human effector memory CD8 T cells had not been evaluated. Using Ag-specific CD8 T cells derived from melanoma patients immunized with the gp100 melanoma Ag, we demonstrate that the addition of TGF-beta1 to the initial Ag activation cultures attenuated the gain of effector function by Ag-specific memory CD8 T cells while the phenotypic changes associated with activation and differentiation into effector memory were comparable to control cultures. These activated memory CD8 T cells consistently expressed lower mRNA levels for T-bet, suggesting a mechanism for TGF-beta1-mediated suppression of gain of effector function in memory T cells. Moreover, TGF-beta1 induced a modest expression of CCR7 on Ag-activated memory CD8 T cells. TGF-beta1 also suppressed cytokine secretion by Ag-specific effector memory CD8 T cells, as well as melanoma-reactive tumor-infiltrating lymphocytes and CD8 T cell clones. These results demonstrate that TGF-beta1 suppresses not only the acquisition but also expression of effector function on human memory CD8 T cells and tumor-infiltrating lymphocytes reactive against melanoma, suggesting that TGF-beta1-mediated suppression can hinder the therapeutic benefits of vaccination, as well as immunotherapy in cancer patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号