首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 913 毫秒
1.
吗啡对培养海马神经元钙离子作用的机制研究   总被引:2,自引:0,他引:2  
目的:研究吗啡对海马神经元[Ca^2 ]i影响的机制,为探索吗啡成瘾的神经生物学机制与可能的治疗途径。方法:荧光探针Fluo-4标记细胞内游离钙后,用激光共聚焦显微镜检测吗啡对大鼠原代培养海马神经元[Ca^2 ]i的影响。结果:吗啡急性刺激引起海马神经元[Ca^2 ]i升高,CTOP不能阻断吗啡引起的细胞内[Ca^2 ]i增加,而naltrindole能阻断吗啡引起的细胞内[Ca^2 ]i反应;Thapsigargin预处理阻断吗啡诱导的细胞内[Ca^2 ]i增加,Verapamil预处理不能完全抑制吗啡引起的细胞内[Ca^2 ]i增加;吗啡长时程作用后,海马神经元[Ca^2 ]i升高,加入纳络酮急性戒断后,不能阻断吗啡引起的细胞内[Ca^2 ]i升高,反而引起[Ca^2 ]i异常升高。结论:吗啡急性刺激引起的海马神经元内游离钙增加主要来源于δ2阿片受体介导的IP3敏感的钙库释放。  相似文献   

2.
目的:研究PAR-2激动剂SLIGKV和tc-LIGRLO、胰蛋白酶及其抑制剂对H292肺上皮细胞[Ca^2+]i的影响.方法:应用Fluo-3/AM 荧光标记技术和激光扫描共聚焦显微镜(LSCM) 检测不同因素处理的H292肺上皮细胞[Ca^2+]i.结果:胰蛋白酶、SLIGKV、tc-LIGRLO均能引发H292细胞[Ca^2+]i的增加,平均荧光强度分别比加入药物前增加267%,60%和37%.胰蛋白酶抑制剂大豆胰蛋白酶抑制剂(SBTI)和α1-抗胰蛋白酶(α1-AT)可以抑制胰蛋白酶诱导的细胞[Ca^2+]i的增加.结论:PAR-2可以介导H292肺上皮细胞[Ca^2+]i的释放增加,胰蛋白酶抑制剂可以抑制胰蛋白酶诱导的细胞[Ca^2+]i的增加.  相似文献   

3.
柴胡皂甙(I)对胰腺腺泡的拟膜受体激动剂作用   总被引:4,自引:0,他引:4  
应用检测淀粉酶分泌和单细胞[Ca^2 ]的技术,研究了Bt2-cGMP和GDP对柴胡皂甙(Ⅰ)[SA(I)]和CCK-8促大鼠胰腺腺泡分泌和增加[Ca^2 ]i的抑制作用。Bt2-cGMP对SA(I)和CCK-8促酶分泌的抑制有相似的剂量依赖性。Bt2-cGMP对SA(I)刺激的酶分泌动力学的抑制较对CCK-8滞后并持续。SA(I)诱发的胰腺腺泡单细胞[Ca^2 ]i的变化与CCK-8的作用有所不同;[Ca^2 ]i峰值上升较慢且持续较长,并在峰后[Ca^2 ]i再次升高。GDP亦抑制SA(I)刺激的酶分泌和[Ca^2 ]i增加的峰值。结果表明,SA(I)可激活胰腺腺泡细胞膜受体从而升高[Ca^2 ]i和促酶分泌。  相似文献   

4.
pH改变对心肌细胞内Ca2+浓度和细胞长度的影响   总被引:1,自引:0,他引:1  
目的:探讨细胞内pH(pHi)改变对心肌细胞内Ca^2 浓度([Ca^2 ]i)和细胞长度的影响。方法:心肌细胞内分别灌注20mmol/L丙酸钠和15mmol/L NH4Cl ,建立细胞内酸碱中毒模型。荧光指示剂indo-1和SNARF-1载入大鼠心肌细胞内,用荧光显微镜同时测定心肌[Ca^2 ]i、pHi和细胞长度。结果:细胞内酸中毒早期,收缩期和舒张期[Ca^2 ]i轻度增加,细胞缩短(CS)降低,细胞长度增加,心肌纤维对Ca^2 的敏感性和CS/[Ca^2 ]i降低(P<0.01);碱中毒时,收缩期和舒张期[Ca^2 ]i均较对照组降低,CS增加,细胞长度变短,心肌纤维对Ca^2 的敏感性和CS/[Ca^2 ]i增加(P<0.01)。结论:酸中毒早期[Ca^2 ]i和细胞长度增加,碱中毒时[Ca^2 ]i和细胞长度降低。酸、碱中毒对Ca^2+敏感性的影响并非线性关系,即单位pHi变化时酸中毒对敏感性的影响较碱中毒小。  相似文献   

5.
Calsyntenins(Cstn)是一个独特的将胞外蛋白水解活性与胞内Ca^2+信号转导相连在一起的家族,属于钙结合蛋白,与钙离子结合,参与信号转导和细胞交流。它包括3个成员,分别为calsyntenin-1、calsyntenin-2和calsyntenin-3,皆为突触后膜蛋白,主要在脑的神经元中表达,但表达模式各自不同,而且其蛋白也表现出高度的结构多样性。Calsyntenin-1位于中枢神经系统(CNS)突触后膜,是一个突触后膜蛋白水解的蛋白质。有一个结合钙的胞质酸性结构域,是一个通过胞外蛋白水解来调节突触后钙的动力调节子。Calsyntenin-1调节突触后膜下或胞内Ca^2+储存库中的Ca^2+瞬变,从而参与长时程增强(LTP)和长时程抑制(LTD),与学习和记忆功能紧密相关。尤其是最近研究发现,β淀粉样蛋白前体(APP)和calsyntenins共同作用增加了β淀粉样蛋白(Aβ)的分泌,从而造成神经系统紊乱,促进阿尔采末病(AD)的发生,这对于AD发病机制的揭示和开发新一代治疗AD的药物具有重要的意义。  相似文献   

6.
突触可塑性是神经系统所具有的重要特征,也是神经系统实现其功能的重要保障。按照持续的时间划分,突触可塑性可分为短时程突触可塑性和长时程突触可塑性。短时程突触可塑性包括短时程增强和短时程压抑两种类型。与长时程突触可塑性不同,短时程突触可塑性的产生主要依赖于神经递质释放概率的变化,其往往决定神经回路的信息处理和反应模式,不仅直接参与了对输入信号的识别和处理,而且还可对长时程突触可塑性的表达产生重要影响。  相似文献   

7.
利用Fluo-3荧光探针检测细胞内自由Ca^2 浓度([Ca^2 ]i),研究了大黄素升高豚鼠结肠带细胞[Ca^2 ]i是量-效关系和动态变化特征,及GDP和胞外Ca^2 浓度对其的影响。较低浓度大黄素随药物浓度增加使[Ca^2 ]i显著升高,更高浓度大黄素有超最大抑制效应,GDP对大黄不升高细胞[Ca^2 ]i的抑制作用随其浓度增加而增强,GDP和胞外Ca^2 浓度影响大黄素诱发的[Ca^2 ]i动态变化的结果表明:GDP使[Ca^2 ]i峰消失,胞外无Ca^2 导致[Ca^2 ]i随时间显著下降,大黄素升高[Ca^2 ]i作用趋向消失。  相似文献   

8.
突触长时程增强形成与学习记忆的相关研究   总被引:4,自引:0,他引:4  
突触长时程增强(LTP)的形成与学习记忆有相似特征,将其作为记忆的一种模式加以研究,并深入探索LTP机制产生与静止突触的关系,长时程突触修饰与突触后神经细胞内Ca^2 的作用机制,学习行为后海马内出现的突触效能变化与行为学习之间的关系,以及BDNF对海马突触的LTP调节与长时记忆所涉及关于LTP的相关基因表达。  相似文献   

9.
大黄素影响巨噬细胞升高[Ca2+]i 和释放TNF-α的作用特征   总被引:6,自引:0,他引:6  
为了研究大黄素(emodin)对正常的和细菌脂多糖(LPS)刺激的大鼠腹腔巨噬细胞(PMφ)释放肿瘤坏死因子α(TNF-α)和升高[Ca^2 ]i的影响,应用L929细胞系和MTT法检测TNF-α量,同时用激光共焦扫描显微术检测单细胞[Ca^2 ]i变化动力学。结果显示大黄素能轻度促进正常PMφ释放TNF-α,并发现大黄素诱发PMφ[Ca^2 ]i变化呈振荡波模式。大黄紫显著抑制LPS刺激PMφ过度释放TNF-α和升高[Ca^2 ]i,10^-5mol/L大黄素抑制了10mg/L LPS刺激的TNF-α峰值的50%和[Ca^2 ]i峰值的68%。LPS诱发MPφ[Ca^2 ]i变化呈现高幅值的“平台期”,大黄素使之转变为低幅值的波动变化。以上结果说明,大黄素对PMφ释放TNF-α和升高[Ca^2 ]i表现出的双向调节作用之间有一定的相关性,大黄素对LPS诱发的[Ca^2 ]i升高的调制,可能是抑制LPS刺激PMφ释放TNF-α的信号传导通路中的重要环节。  相似文献   

10.
目的:观察青藤碱对血管平滑肌细胞(VSMC)丝裂素活化蛋白激酶(MAPK)、蛋白激酶C(PKC)活性和胞内游离钙浓度([Ca^2+i])的影响。方法:将VSMC正常培养液、ox-LDL诱导血管内皮细胞(VEC)损伤的条件培养基、青藤碱加ox-LDL诱导VEC损伤的条件培养基等分别作用于VSMC,采用β-放射活性法等测定MAPK及PKC活性,荧光光度法检测VSMC[Ca^2+]i。结果:VEC损伤条件培养基作用于VSMC后,与正常培养VSMC相比,细胞MAPK、PKC活性明显增加(P〈0.01),细胞[Ca^2+]i增加;青藤碱作用于VEC损伤条件培养基培养的VSMC后,与模型组相比,MAPK及PKC活性明显减少(P〈0.01)、细胞[Ca^2+]i降低。结论:青藤碱抑制VSMC增殖的作用可能与拮抗MAPK、PKC活性和细胞[Ca^2+]i的增加有关。  相似文献   

11.
Calcium ions play crucial signaling roles in many forms of activity-dependent synaptic plasticity. Recent presynaptic [Ca2+]i measurements and manipulation of presynaptic exogenous buffers reveal roles for residual [Ca2+]i following conditioning stimulation in all phases of short-term synaptic enhancement. Pharmacological manipulations implicate mitochondria in post-tetanic potentiation. New evidence supports an influence of Ca2+ in replacing depleted vesicles after synaptic depression. In addition, high-resolution measurements of [Ca2+]i in dendritic spines show how Ca2+ can encode the precise relative timing of presynaptic input and postsynaptic activity and generate long-term synaptic modifications of opposite polarity.  相似文献   

12.
Nakamura T  Barbara JG  Nakamura K  Ross WN 《Neuron》1999,24(3):727-737
Increases in postsynaptic [Ca2+]i can result from Ca2+ entry through ligand-gated channels or voltage-gated Ca2+ channels, or through release from intracellular stores. Most attention has focused on entry through the N-methyl-D-aspartate (NMDA) receptor in causing [Ca2+]i increases since this pathway requires both presynaptic stimulation and postsynaptic depolarization, making it a central component in models of synaptic plasticity. Here, we report that repetitive synaptic activation of metabotropic glutamate receptors (mGluRs), paired with backpropagating action potentials, causes large, wave-like increases in [Ca2+]i predominantly in restricted regions of the proximal apical dendrites and soma of hippocampal CA1 pyramidal neurons. [Ca2+]i changes of several micromolars can be reached by regenerative release caused by the synergistic effect of mGluR-generated inositol 1,4,5-trisphosphate (IP3) and spike-evoked Ca2+ entry acting on the IP3 receptor.  相似文献   

13.
An in vivo Ca2+ imaging technique was applied to examine the cellular mechanisms for attenuation of wind sensitivity in the identified primary sensory interneurons in the cricket cercal system. Simultaneous measurement of the cytosolic Ca2+ concentration ([Ca2+]i) and membrane potential of a wind-sensitive giant interneuron (GI) revealed that successive air puffs caused the Ca2+ accumulation in dendrites and diminished the wind-evoked bursting response in the GI. After tetanic stimulation of the presynaptic cercal sensory nerves induced a larger Ca2+ accumulation in the GI, the wind-evoked bursting response was reversibly decreased in its spike number. When hyperpolarizing current injection suppressed the [Ca2+]i elevation during tetanic stimulation, the wind-evoked EPSPs were not changed. Moreover, after suprathreshold tetanic stimulation to one side of the cercal nerve resulted in Ca2+ accumulation in the GI's dendrites, the slope of EPSP evoked by presynaptic stimulation of the other side of the cercal nerve was also attenuated for a few minutes after the [Ca2+]i had returned to the prestimulation level. This short-term depression at synapses between the cercal sensory neurons and the GI (cercal-to-giant synapses) was also induced by a depolarizing current injection, which increased the [Ca2+]i, and buffering of the Ca2+ rise with a high concentration of a Ca2+ chelator blocked the induction of short-term depression. These results indicate that the postsynaptic Ca2+ accumulation causes short-term synaptic depression at the cercal-to-giant synapses. The dendritic excitability of the GI may contribute to postsynaptic regulation of the wind-sensitivity via Ca2+-dependent depression.  相似文献   

14.
Trains of action potentials evoked rises in presynaptic Ca2+ concentration ([Ca2+]i) at the squid giant synapse. These increases in [Ca2+]i were spatially nonuniform during the trains, but rapidly equilibrated after the trains and slowly declined over hundreds of seconds. The trains also elicited synaptic depression and augmentation, both of which developed during stimulation and declined within a few seconds afterward. Microinjection of the Ca2+ buffer EGTA into presynaptic terminals had no effect on transmitter release or synaptic depression. However, EGTA injection effectively blocked both the persistent Ca2+ signals and augmentation. These results suggest that transmitter release is triggered by a large, brief, and sharply localized rise in [Ca2+]i, while augmentation is produced by a smaller, slower, and more diffuse rise in [Ca2+]i.  相似文献   

15.
The release of neurotransmitter from presynaptic terminals depends on an increase in the intracellular Ca2+ concentration ([Ca2+]i). In addition to the opening of presynaptic Ca2+ channels during excitation, other Ca2+ transport systems may be involved in changes in [Ca2+]i. We have studied the regulation of [Ca2+]i in nerve terminals of hippocampal cells in culture by the Na(+)-Ca2+ exchanger and by mitochondria. In addition, we have measured changes in the frequency of spontaneous excitatory postsynaptic currents (sEPSC) before and after the inhibition of the exchanger and of mitochondrial metabolism. We found rather heterogeneous [Ca2+]i responses of individual presynaptic terminals after inhibition of Na(+)-Ca2+ exchange. The increase in [Ca2+]i became more uniform and much larger after additional treatment of the cells with mitochondrial inhibitors. Correspondingly, sEPSC frequencies changed very little when only Na(+)-Ca2+ exchange was inhibited, but increased dramatically after additional inhibition of mitochondria. Our results provide evidence for prominent roles of Na(+)-Ca2+ exchange and mitochondria in presynaptic Ca2+ regulation and spontaneous glutamate release.  相似文献   

16.
The induction of long-term potentiation (LTP) in hippocampal CA1 pyramidal cells requires a rise in postsynaptic intracellular Ca2+ concentration ([Ca2+]i). To determine the time for which Ca2+ must remain elevated to induce LTP, the photolabile Ca2+ buffer diazo-4 was used to limit the duration of the rise in postsynaptic [Ca2+]i following a tetanus. The affinity of diazo-4 for Ca2+ increases approximately 1600-fold upon flash photolysis, permitting almost instantaneous buffering of [Ca2+]i without disturbing resting [Ca2+]i prior to the flash. Photolysis of diazo-4 1 s following the start of the tetanus blocked LTP, while delaying photolysis for more than 2 s had no discernible effect on LTP. Photolyzing diazo-4 at intermediate delays (1.5-2 s) or reducing photolysis of diazo-4 often resulted in short-term potentiation (STP). These results indicate that a tetanus-induced rise in postsynaptic [Ca2+]i lasting at most 2-2.5 s is sufficient to generate LTP. Smaller increases or shorter duration rises in [Ca2+]i may result in STP.  相似文献   

17.
We propose a generalized mathematical model for a small neural-glial ensemble. The model incorporates subunits of the tripartite synapse that includes a presynaptic neuron, the synaptic terminal itself, a postsynaptic neuron, and a glial cell. The glial cell is assumed to be activated via two different pathways: (i) the fast increase of intercellular [K(+)] produced by the spiking activity of the postsynaptic neuron, and (ii) the slow production of a mediator triggered by the synaptic activity. Our model predicts the long-term potentiation of the postsynaptic neuron as well as various [Ca(2+)] transients in response to the activation of different pathways.  相似文献   

18.
Mb1 bipolar cells (ON-type cells) of the goldfish retina have exceptionally large (approximately 10 microns in diameter) presynaptic terminals, and thus, are suitable for investigating presynaptic mechanisms for transmitter release. Using enzymatically dissociated Mb1 bipolar cells under whole-cell voltage clamp, we measured the Ca2+ current (ICa), the intracellular free Ca2+ concentration ([Ca2+]i), and membrane capacitance changes associated with exocytosis and endocytosis. Release of transmitter (glutamate) was monitored electrophysiologically by a glutamate receptor-rich neuron as a probe. L-type Ca2+ channels were localized at the presynaptic terminals. The presynaptic [Ca2+]i was strongly regulated by cytoplasmic Ca2+ buffers, the Na(+)-Ca2+ exchanger and the Ca2+ pump in the plasma membrane. Once ICa was activated, a steep Ca2+ gradient was created around Ca2+ channels; [Ca2+]i increased to approximately 100 microM at the fusion sites of synaptic vesicles whereas up to approximately 1 microM at the cytoplasm. The short delay (approximately 1 ms) of exocytosis and the lack of prominent asynchronous release after the termination of ICa suggested a low-affinity Ca2+ fusion sensor for exocytosis. Depending on the rate of Ca2+ influx, glutamate was released in a rapid phasic mode as well as a tonic mode. Multiple pools of synaptic vesicles as well as vesicle cycling seemed to support continuous glutamate release. Activation of protein kinase C increased the size of synaptic vesicle pool, resulting in the potentiation of glutamate release. Goldfish Mb1 bipolar cells may still be an important model system for understanding the molecular mechanisms of transmitter release.  相似文献   

19.
Brain-derived neurotrophic factor (BDNF), like other neurotrophins, has long-term effects on neuronal survival and differentiation; furthermore, BDNF has been reported to exert an acute potentiation of synaptic activity and are critically involved in long-term potentiation(LTP). We found that BDNF rapidly induced potentiation of synaptic activity and an increase in the intracellular Ca2+ concentration in cultured cortical neurons. Within minutes of BDNF application to cultured cortical neurons, spontaneous firing rate was dramatically increased as was the frequency and amplitude of excitatory spontaneous postsynaptic currents (EPSCs). Fura-2 recordings showed that BDNF acutely elicited an increase in intracellular calcium concentration ([Ca2+]i). This effect was partially dependent on extracellular Ca2+. In calcium-free perfusion medium a substantial calcium signal remained which disappeared after loading of cortical neurons with 5 microM U-73122. BDNF-induce Ca2+ transients were completely blocked by K252a and partially blocked by Cd2+. The results demonstrate that BDNF can enhance synaptic transmission and induce directly a rise in [Ca2+]i that require two routes: the release of Ca2+ from intracellular calcium stores and influx of extracellular Ca2+ mainly through voltage-dependent Ca2+ channels in cultured cortical neurons.  相似文献   

20.
Serotonin (5-HT) produces presynaptic facilitation and FMRFamide produces presynaptic inhibition in Aplysia sensory neurons. These effects may involve the modulation of Ca2+ influx into sensory neuron terminals during action potentials. Here, we have used the Ca2+ indicator dye fura-2 to monitor directly the effects of 5-HT and FMRFamide on internal Ca2+ concentration ([Ca2+]i). 5-HT caused a 50% increase in the transient rise in [Ca2+]i in response to action potentials, whereas FMRFamide decreased the [Ca2+]i transient by 40%. Neither transmitter altered the resting [Ca2+]i, the time course of recovery of the [Ca2+]i transient, or the [Ca2+]i transients produced by intracellular injection of CaCl2 or inositol 1,4,5-trisphosphate. We conclude that the effects of the transmitters on the action potential-induced [Ca2+]i transient are due to changes in Ca2+ influx and not in intracellular Ca2+ homeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号