首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 105 毫秒
1.
1. Stressful abiotic conditions and mycorrhizal fungi have both been shown to influence plant quality significantly, yet the interactive effects of these factors on relationships among plants, herbivores, and natural enemies remain unclear. 2. In this study, the results of a factorial field experiment are reported in which the effects of plant stress and mycorrhizae on density and parasitism of three herbivores of Baccharis halimifolia L. were examined. 3. Plant stress was increased by adding salt to the soil, and association with mycorrhizal fungi was increased by inoculating plant roots. 4. Inoculation with mycorrhizal fungi resulted in increased density of all three herbivore species, but the effects of mycorrhizae on parasitism varied by species and with soil salinity levels. For the gall maker Neolasioptera lathami Gagne, mycorrhizae decreased parasitism regardless of soil salinity levels. For the leaf miners Amauromyza maculosa Malloch and Liriomyza trifolii Burgess, mycorrhizae effectively negated the decrease in parasitism resulting from increased salinity. 5. The results of this study show that the effects of mycorrhizae on parasitism may be context dependent, and can be positive or negative depending upon species and environmental conditions.  相似文献   

2.
In this study we investigated the potential importance of species identity and herbivore feeding mode in determining the strengths of top-down and bottom-up effects on phytophagous insect densities. In 1998, we conducted two factorial field experiments in which we manipulated host plant quality and intensity of parasitoid attack on three salt marsh herbivores, the planthoppers Prokelisia marginata and Pissonotus quadripustulatus (Homoptera: Delphacidae), which feed only on Spartina alterniflora and Borrichia frutescens, respectively, and the gall fly Asphondylia borrichiae (Diptera: Cecidomyiidae), which feeds only on B. frutescens. We increased plant quality through addition of nitrogen fertilizer, and decreased parasitism by trapping hymenopteran parasitoids continuously throughout the study. Herbivore densities were censused biweekly. Increasing plant quality through fertilization increased the density of all three herbivores within 2 weeks of treatment application, and higher densities were maintained for the duration of the study. Reduction of top-down pressure had no effect on either planthopper species, possibly because of compensatory mortality affecting the two species. In contrast, reduction of parasitism significantly increased the density of A. borrichiae galls, perhaps because development within gall tissue reduces the sources of compensatory mortality affecting this species. The results of this study show that the bottom-up effects of plant quality were strong and consistent for all three species, but the strength of top-down effects differed between the two feeding guilds. Thus, even for herbivores feeding on the same host plant, conclusions drawn regarding the relative importance of top-down and bottom-up effects may vary depending upon the feeding mode of the herbivore.  相似文献   

3.
Stiling P  Moon DC 《Oecologia》2005,142(3):413-420
Resource quality (plant nitrogen) and resource quantity (plant density) have often been argued to be among the most important factors influencing herbivore densities. A difficulty inherent in the studies that manipulate resource quality, by changing nutrient levels, is that resource quantity can be influenced simultaneously, i.e. fertilized plants grow more. In this study we disentangled the potentially confounding effects of plant quality and quantity on herbivore trophic dynamics by separately manipulating nutrients and plant density, while simultaneously reducing pressure from natural enemies (parasitoids) in a fully factorial design. Plant quality of the sea oxeye daisy, Borrichia frutescens, a common coastal species in Florida, was manipulated by adding nitrogen fertilizer to increase and sugar to decrease available nitrogen. Plant density was manipulated by pulling by hand 25 or 50% of Borrichia stems on each plot. Because our main focal herbivore was a gall making fly, Asphondylia borrichiae, which attacks only the apical meristems of plants, manipulating plant nitrogen levels was a convenient and reliable way to change plant quality without impacting quantity because fertilizer and sugar altered plant nitrogen content but not plant density. Our other focal herbivore was a sap-sucker, Pissonotus quadripustulatus, which taps the main veins of leaves. Parasitism of both herbivores was reduced via yellow sticky traps that caught hymenopteran parasitoids. Plant quality significantly affected the per stem density of both herbivores, with fertilization increasing, and sugar decreasing the densities of the two species but stem density manipulations had no significant effects. Parasitoid removal significantly increased the densities of both herbivores. Top-down manipulations resulted in a trophic cascade, as the density of Borrichia stems decreased significantly on parasitoid removal plots. This is because reduced parasitism increases gall density and galls can kill plant stems. In this system, plant quality and natural enemies impact per stem herbivore population densities but plant density does not.  相似文献   

4.
Huberty AF  Denno RF 《Oecologia》2006,149(3):444-455
Phytophagous insects have a much higher nitrogen and phosphorus content than their host plants, an elemental mismatch that places inherent constraints on meeting nutritional requirements. Although nitrogen limitation is well documented in insect herbivores, phosphorus limitation is poorly studied. Using factorial experiments in the laboratory and field, in which levels of soil nitrogen and phosphorus were manipulated, we studied the relative consequences of macronutrient limitation for two herbivores, namely the phloem-feeding planthoppers Prokelisia dolus and P. marginata. These planthoppers inhabit the salt marshes of North America where large stands of their Spartina host plant are found. Notably, these congeners differ in their dispersal abilities; P. marginata is dispersive whereas P. dolus is sedentary. Both nitrogen and phosphorus subsidies enhanced the nitrogen and phosphorus content of Spartina. When P. dolus and P. marginata were raised on plants with an enriched nitrogen signature, they exhibited greater survival, grew to a larger size, developed more rapidly, and achieved higher densities than on nitrogen-deficient plants. However, P. marginata experienced greater fitness penalties than P. dolus on nitrogen-deficient plants. Phosphorus limitation and associated fitness penalties were not as severe as nitrogen limitation for P. marginata, and were not detected in P. dolus. The tempered response of P. dolus to N- and P-deficient Spartina is probably due to its greater investment in feeding musculature and hence ability to compensate for nutrient deficiencies with increased ingestion. To cope with deteriorating plant quality, P. dolus employs compensatory feeding, whereas P. marginata disperses to higher quality Spartina. When its option of dispersal is eliminated and P. marginata is confined on nutrient-deficient plants, its performance is drastically reduced compared with P. dolus. This research highlights the importance of interfacing herbivore life-history strategies with ecological stoichiometry in order to interpret the consequences of macronutrient limitation on herbivore performance and population dynamics.  相似文献   

5.
1. Plant stress and association with mycorrhizal fungi have been shown to significantly influence plant quality, yet their roles in influencing plant–insect interactions remain unclear. Even less is known about how these factors might interact with or be modified by within‐trophic level interactions. 2. In the present study, the results of a factorial field experiment are reported in which the effects of within‐trophic‐level interactions, plant stress, and mycorrhizae on three herbivores of Baccharis halimifolia were examined. 3. Plant stress was increased by adding salt to the soil, and availability of mycorrhizal fungi was increased by inoculating plant roots. These treatments were applied to plants with either low or high densities of a competitor (Trirhabda baccharidis). 4. For the two leaf miners, Amauromyza maculosa and Liriomyza trifolii, increased soil salinity and high densities of the competitor Trirhabdabaccharidis resulted in significant decreases in density. Neither of these treatments affected the gall maker Neolasioptera lathami. 5. Mycorrhizal fungi increased the densities of all three herbivores, possibly by increasing foliar nitrogen levels. For the two leaf miners, there was also evidence that mycorrhizae ameliorated the negative effects of salt stress. There was also evidence that high levels of competition dampened the positive effects of mycorrhizae on the two leaf miners.  相似文献   

6.
A fungal root symbiont modifies plant resistance to an insect herbivore   总被引:3,自引:0,他引:3  
Vesicular-arbuscular mycorrhizal (VAM) fungi are common root-colonizing symbionts that affect nutrient uptake by plants and can alter plant susceptibility to herbivores. I conducted a factorial experiment to test the hypotheses that colonization by VAM fungi (1) improves soybean (Glycine max) tolerance to grazing by folivorous Mexican bean beetle (Epilachna varivestis), and (2) indirectly affects herbivores by increasing host resistance. Soybean seedlings were inoculated with the VAM fungus Glomus etunicatum or VAM-free filtrate and fertilized with high-[P] or low-[P] fertilizer. After plants had grown for 7 weeks first-instar beetle larvae were placed on bagged leaves. Growth of soybean was little affected by grazing larvae, and no effects of treatments on tolerance of soybeans to herbivores were evident. Colonization by VAM fungus doubled the size of phosphorus-stressed plants but these plants were still half the size of plants given adequate phosphorus. High-[P] fertilizer increased levels of phosphorus and soluble carbohydrates, and decreased levels of soluble proteins in leaves of grazed plants. Colonization of grazed plants by VAM fungus had no significant effect on plant soluble carbohydrates, but increased concentration of phosphorus and decreased levels of proteins in phosphorus-stressed plants to concentrations similar to those of plants given adequate phosphorus. Mexican bean beetle mass at pupation, pupation rate, and survival to eclosion were greatest for beetles reared on phosphorus-stressed, VAM-colonized plants, refuting the hypothesis that VAM colonization improves host plant resistance. VAM colonization indirectly affected performance of Mexician bean beetle larvae by improving growth and nutrition of the host plant. Received: 28 February 1997 / Accepted: 23 June 1997  相似文献   

7.
Elzinga JA  Turin H  van Damme JM  Biere A 《Oecologia》2005,144(3):416-426
Habitat fragmentation can affect levels of herbivory in plant populations if plants and herbivores are differentially affected by fragmentation. Moreover, if herbivores are top–down controlled by predators or parasitoids, herbivory may also be affected by differential effects of fragmentation on herbivores and their natural enemies. We used natural Silene latifolia populations to examine the effects of plant population size and isolation on the level of herbivory by the seed predating noctuid Hadena bicruris and the rate of parasitism of the herbivore by its parasitoids. In addition, we examined oviposition rate, herbivory and parasitism in differently sized experimental populations. In natural populations, the level of herbivory increased and the rate of parasitism decreased with decreasing plant population size and increasing degree of isolation. The number of parasitoid species also declined with decreasing plant population size. In the experimental populations, the level of herbivory was also higher in smaller populations, in accordance with higher oviposition rates, but was not accompanied by lower rates of parasitism. Similarly, oviposition rate and herbivory, but not parasitism rate, increased near the edges of populations. These results suggests that in this system with the well dispersing herbivore H. bicruris, habitat fragmentation increases herbivory of the plant through a behavioural response of the moth that leads to higher oviposition rates in fragmented populations with a reduced population size, increased isolation and higher edge-to-interior ratio. Although the rate of parasitism and the number of parasitoid species declined with decreasing population size in the natural populations, we argue that in this system it is unlikely that this decline made a major contribution to increased herbivory.  相似文献   

8.
Interest in sustainable farming methods that rely on alternatives to conventional synthetic fertilizers and pesticides is increasing. Sustainable farming methods often utilize natural populations of predatory and parasitic species to control populations of herbivores, which may be potential pest species. We investigated the effects of several types of fertilizer, including those typical of sustainable and conventional farming systems, on the interaction between a herbivore and parasitoid. The effects of fertilizer type on percentage parasitism, parasitoid performance, parasitoid attack behaviour and responses to plant volatiles were examined using a model Brassica system, consisting of Brassica oleracea var capitata, Plutella xylostella (Lepidoptera) larvae and Cotesia vestalis (parasitoid). Percentage parasitism was greatest for P. xylostella larvae feeding on plants that had received either a synthetic ammonium nitrate fertilizer or were unfertilized, in comparison to those receiving a composite fertilizer containing hoof and horn. Parasitism was intermediate on plants fertilized with an organically produced animal manure. Male parasitoid tibia length showed the same pattern as percentage parasitism, an indication that offspring performance was maximized on the treatments preferred by female parasitoids for oviposition. Percentage parasitism and parasitoid size were not correlated with foliar nitrogen concentration. The parasitoids did not discriminate between hosts feeding on plants in the four fertilizer treatments in parasitoid behaviour assays, but showed a preference for unfertilized plants in olfactometer experiments. The percentage parasitism and tibia length results provide support for the preference–performance hypothesis.  相似文献   

9.
1. A tritrophic perspective is fundamental for understanding the drivers of insect–plant interactions. While host plant traits can directly affect insect herbivore performance by either inhibiting or altering the nutritional benefits of consumption, they can also have an indirect effect on herbivores by influencing rates of predation or parasitism. 2. Enhancing soil nutrients available to trees of the genus Eucalyptus consistently modifies plant traits, typically improving the nutritional quality of the foliage for insect herbivores. We hypothesised that resulting increases in volatile essential oils could have an indirect negative effect on eucalypt‐feeding herbivores by providing their natural enemies with stronger host/prey location cues. 3. Eucalyptus tereticornis Smith seedlings were grown under low‐ and high‐nutrient conditions and the consequences for the release of volatile cues from damaged plants were examined. The influence of 1,8‐cineole (the major volatile terpene in many Eucalyptus species) on rates of predation on model caterpillars in the field was then examined. 4. It was found that the emission of cineole increased significantly after damage (artificial or herbivore), but continued only when damage was sustained by herbivore feeding. Importantly, more cineole was emitted from high‐ than low‐nutrient seedlings given an equivalent amount of damage. In the field, predation was significantly greater on model caterpillars baited with cineole than on unbaited models. 5. These findings are consistent with the hypothesis that any performance benefits insect herbivores derive from feeding on high‐nutrient eucalypt foliage could be at least partially offset by an increased risk of predation or parasitism via increased emission of attractive volatiles.  相似文献   

10.
The type and quantity of fertilizer supplied to a crop will differ between organic and conventional farming practices. Altering the type of fertilizer a plant is provided with can influence a plant’s foliar nitrogen levels, as well as the composition and concentration of defence compounds, such as glucosinolates. Many natural enemies of insect herbivores can respond to headspace volatiles emitted by the herbivores’ host plant in response to herbivory. We propose that manipulating fertilizer type may also influence the headspace volatile profiles of plants, and as a result, the tritrophic interactions that occur between plants, their insect pests and those pests’ natural enemies. Here, we investigate a tritrophic system consisting of cabbage plants, Brassica oleracea, a parasitoid, Diaeretiella rapae, and one of its hosts, the specialist cabbage aphid Brevicoryne brassicae. Brassica oleracea plants were provided with either no additional fertilization or one of three types of fertilizer: Nitram (ammonium nitrate), John Innes base or organic chicken manure. We investigated whether these changes would alter the rate of parasitism of aphids on those plants and whether any differences in parasitism could be explained by differences in attractivity of the plants to D. rapae or attack rate of aphids by D. rapae. In free‐choice experiments, there were significant differences in the percentage of B. brassicae parasitized by D. rapae between B. oleracea plants grown in different fertilizer treatments. In a series of dual‐choice Y‐tube olfactometry experiments, D. rapae females discriminated between B. brassicae‐infested and undamaged plants, but parasitoids did not discriminate between similarly infested plants grown in different fertilizer treatments. Correspondingly, in attack rate experiments, there were no differences in the rate that D. rapae attacked B. brassicae on B. oleracea plants grown in different fertilizer treatments. These findings are of direct relevance to sustainable and conventional farming practices.  相似文献   

11.
We studied a specialist parasitoid (Coccobius fulvus Compere et Annecke; Hymenoptera: Aphelinidae), its host (the arrowhead scale, Unaspis yanonensis Kuwana; Hemiptera: Diaspididae) and the host plant (Citrus unshiu Marc; Rutaceae) to examine the indirect effects, via host–parasitoid interactions, of the parasitoid on plant biomass. We compared plant biomass and herbivore abundance in a system of two trophic levels (plants and herbivores) with a system of three trophic levels (plants, herbivores and parasitoids) using enclosure experiments in an agricultural setting. Each of eight young Citrus trees was infested with 40 scales and placed in an enclosure. We introduced three female parasitoids into half of the enclosures and monitored temporal changes in scale density and cumulative parasitism for the subsequent 11months. Plant biomass was then compared between treatment groups (parasitoids added) and controls (parasitoids excluded). During the experiment, cumulative parasitism increased rapidly in the parasitoid-addition enclosures to a maximum of 89%, and the number of live scales in the control enclosures was approximately 10-fold that in the treatment enclosures. At the end of the experiment, plant biomass was threefold higher in the parasitoid-addition enclosures than in the control enclosures. These results have two implications for terrestrial communities. First, specialist parasitoids, which are the principal natural enemies of most herbivorous insects, can trigger trophic cascades in the same way that generalist predators can. Second, cascading effects can be detected by observing changes in plant biomass. The latter finding is contrary to recent conclusions about top-down cascades (i.e. that trophic cascades are less likely to be observed when plant biomass, rather than plant damage, is considered as the plant-response variable).  相似文献   

12.
Jason E. Jannot 《Oecologia》2009,161(2):267-277
The majority of plants are involved in symbioses with arbuscular mycorrhizal fungi (AMF), and these associations are known to have a strong influence on the performance of both plants and insect herbivores. Little is known about the impact of AMF on complex trophic chains, although such effects are conceivable. In a greenhouse study we examined the effects of two AMF species, Glomus intraradices and G. mosseae on trophic interactions between the grass Phleum pratense, the aphid Rhopalosiphum padi, and the parasitic wasp Aphidius rhopalosiphi. Inoculation with AMF in our study system generally enhanced plant biomass (+5.2%) and decreased aphid population growth (−47%), but there were no fungal species-specific effects. When plants were infested with G. intraradices, the rate of parasitism in aphids increased by 140% relative to the G. mosseae and control treatment. When plants were associated with AMF, the developmental time of the parasitoids decreased by 4.3% and weight at eclosion increased by 23.8%. There were no clear effects of AMF on the concentration of nitrogen and phosphorus in plant foliage. Our study demonstrates that the effects of AMF go beyond a simple amelioration of the plants’ nutritional status and involve rather more complex species-specific cascading effects of AMF in the food chain that have a strong impact not only on the performance of plants but also on higher trophic levels, such as herbivores and parasitoids.  相似文献   

13.
The interactions of plant clone and abiotic factors on a gall-making midge   总被引:2,自引:0,他引:2  
Anthony M. Rossi  P. Stiling 《Oecologia》1998,116(1-2):170-176
Within and around Tampa Bay, Florida, monoclonal populations of the sea daisy, Borrichia frutescens, can be found on small, isolated islands growing within the intertidal zone. Stem tips of Borrichia are attacked by the gall-making cecidomyiid, Asphondyliaborrichiae. We used reciprocal transplants of Borrichia clones between islands to assess the importance of plant genotype and local environmental conditions (shade and host-plant nitrogen) on gall abundance. In another experiment, we controlled for host genotype effects by inducing differences in local environmental conditions through the addition of NH4NO3 fertilizer and/or shade to field plots at the only monoclonal site with a large enough population of Borrichia to facilitate the experiment. We also examined the effect of these variables on attack levels of Asphondylia by parasitoids. In the reciprocal transplant, while some Borrichia clones always supported more galls than others, regardless of environmental conditions, all four clones developed more galls when they were placed in the shade, compared to those in the sun, at all four sites. In addition, some islands always supported more galls than others and we found a significant clone × site interaction. In the single-clone experiment, Borrichia in fertilized- and shaded-only plots developed more Asphondylia galls than those from nonmanipulated control plots, and plants that received both shading and fertilizer developed the most galls. Although shade and fertilization produced an additive increase in plant nitrogen content, their effects resulted in a synergistic decrease in C:N ratio. Neither shading nor host plant nitrogen content had a significant effect on levels of parasitism between experimental and control plants. Our results suggest that genetic differences in Borrichia's susceptibility to Asphondylia attack are important in shaping the distribution of galls, but environmental factors such as soil nitrogen and degree of shading are at least as important as genetic differences between host plants. Received: 12 June 1997 / Accepted: 6 April 1998  相似文献   

14.
Abstract. 1. Much has been learned in recent years regarding the influence of environmental conditions on top‐down and bottom‐up effects acting on insect herbivores. Temporal variation in environmental conditions, however, has gone largely unstudied in spite of undoubtedly strong influences in most systems. 2. A 2‐year study was conducted to examine the legacy effects of previous manipulations of host plant quality and parasitism pressure on the top‐down and bottom‐up effects influencing population densities of the salt marsh planthopper Pissonotus quadripustulatus. 3. For 10 months in 1998, a 2 × 2 factorial experiment was carried out, in which host plant quality was increased by the addition of nitrogen fertiliser, and parasitism pressure was decreased through the use of yellow sticky traps. This was followed by 2 months in the winter with no treatment applications. Treatments were then reversed in 1999 for a further 10 months. 4. In 1998, fertilisation treatments increased plant quality significantly, which resulted in strong effects on P. quadripustulatus density. Parasitism reduction treatments had weaker and time‐dependent effects on the herbivore, increasing planthopper density in late summer and autumn. 5. After 2 months without treatments, previous fertilisation treatments were still influencing all response variables measured significantly. The legacy effects of fertilisation persisted for at least 7 months for the host plant, and at least 5 months for the herbivore and parasitoid. 6. Fertilisation treatments in 1999 increased P. quadripustulatus density by approximately the same percentage as in 1998, suggesting that previous reductions in parasitism had no influence on herbivore responses to increased nutrients. Parasitism reduction treatments in 1999, however, resulted in greater increases in herbivore density than in 1998, suggesting that previous increases in nutrients enabled greater responses to reductions in top‐down pressure. 7. The results show that the top‐down effects of parasitism attenuated more quickly than did the bottom‐up effects of increased plant quality through greater nutrient availability. They also suggest that the recent history of nutrient status in an ecosystem may be important in determining the relative strengths of top‐down and bottom‐up forces.  相似文献   

15.
Herbivores generally benefit from increased plant nitrogen content, because the nitrogen content of animals is much higher than that of plants. Consequently, high plant nitrogen alleviates the profound stoichiometric imbalance that herbivores face in their diets. Parasitic plants provide the opportunity to test this generalization for consumers across kingdoms. We fertilized two microhabitats in a California salt marsh that were dominated by Salicornia virginica or a mixture of S. virginica and Jaumea carnosa. The nitrogen content of both host plants and of the holoparasite Cuscuta salina (dodder) increased in fertilized plots in both microhabitats. Cuscuta preferred to attack Jaumea, although Jaumea had lower nitrogen content than Salicornia. When host nitrogen content was altered by fertilizing plots, however, the percent cover of the parasite doubled. Although parasitic plants and their hosts have similar tissue nitrogen contents, suggesting no stoichiometric imbalance between host and consumer, parasitic plants do not feed on host tissue, but on host xylem and phloem, which are very low in nitrogen. Consequently, parasitic plants face the same dietary stoichiometric constraints as do herbivores, and both herbivores and holoparasitic plants may respond positively to increases in host nitrogen status.  相似文献   

16.
Surprisingly little research has been published on the responses to elevated [CO2] at the community level, where herbivores can select their preferred food. We investigated the combined effects of atmospheric [CO2] and herbivory on synthesised plant communities growing on soils of different fertility. Factorial combinations of two [CO2] (350 or 700 l l−1), two fertility (fertilised or non-fertilised), and two herbivory (herbivores present or absent) treatments were applied to a standard mixture of seven fast- and eight slow-growing plants in outdoor microcosms. The herbivores used were the grain aphid (Sitobion avenae) and the garden snail (Helix aspersa). We measured plant biomass, foliar nitrogen and soluble tannin concentration, aphid fecundity, and snail growth, fecundity, and feeding preferences over one growing season. Elevated [CO2] did not have a significant impact on (1) the combined biomass of fast-growing or slow-growing plants, (2) herbivore feeding preferences, or (3) herbivore fitness. There was, however, a significant biomass increase of Carex flacca (which represented in all cases less than 5% of total live biomass), and some chemical changes in unpalatable plants under elevated [CO2]. The herbivory treatment significantly increased the biomass of slow-growing plants over fast-growing plants, whereas fertilisation significantly increased the abundance of fast-growing plants over slow-growing plants. Predictions on the effects of elevated [CO2] based on published single-species experiments were not supported by the results of this microcosm study. Received: 30 November 1997 / Accepted: 24 July 1998  相似文献   

17.
The susceptibility of plants to herbivores can be strongly influenced by the identity, morphology and palatability of neighboring plants. While the defensive traits of neighbors often determine the mechanism and strength of associational resistance and susceptibility, the effect of neighbors on plant defense phenotype remains poorly understood. We used field surveys and a prickle‐removal experiment in a semi‐arid Kenyan savanna to evaluate the efficacy of physical defenses against large mammalian herbivores in a common understory plant, Solanum campylacanthum. We then quantified the respective effects of spinescent Acacia trees and short‐statured grasses on browsing damage and prickle density in S. campylacanthum. We paired measurements of prickle density beneath and outside tree canopies with long‐term herbivore‐exclusion experiments to evaluate whether associational resistance reduced defense investment by decreasing browsing damage. Likewise, we compared defense phenotype within and outside pre‐existing and experimentally created clearings to determine whether grass neighbors increased defense investment via associational susceptibility. Removing prickles increased the frequency of browsing by ~25%, and surveys of herbivory damage on defended leaves suggested that herbivores tended to avoid prickles. As predicted, associational resistance and susceptibility had opposing effects on plant phenotype: individuals growing beneath Acacia canopies (or, analogously, within large‐herbivore exclosures) had a significantly lower proportion of their leaves browsed and produced ~ 70–80% fewer prickles than those outside refuges, whereas plants in grass‐dominated clearings were more heavily browsed and produced nearly twice as many prickles as plants outside clearings. Our results demonstrate that associational resistance and susceptibility have strong, but opposing, effects on plant defense phenotype, and that variable herbivore damage is a major source of intraspecific variation in defense phenotype in this system.  相似文献   

18.
Pikas (Ochotona princeps: Lagomorpha) build caches of vegetation (“haypiles”), which serve as a food source during winter in alpine and subalpine habitats. Haypiles appear to degrade over time and form patches of nutrient-rich soils in barren talus and scree areas. We sampled soils underneath and next to haypiles, and plants growing on and near haypiles in an alpine cirque in northwestern Wyoming, USA, to determine the effects of pika food caches on N, C, and C/N ratios in soils and plants. We found that (1) haypile soils had significantly higher carbon and nitrogen levels and lower C/N ratios than both adjacent soils and soils in the general study area, (2) two of three plant species tested (Polemonium viscosum and Oxyria digyna) had significantly higher levels of tissue percent N when growing on haypile soils, and (3) total standing plant biomass at the study site increased with soil percent N suggesting that vegetation was nitrogen limited. Pikas may therefore function as allogenic ecosystem engineers by modulating nutrient availability to plants. Received: 5 July 1997 / Accepted: 30 November 1997  相似文献   

19.
The parasite Phelipanche aegyptiaca infests tomato, a crop plant that is commonly cultivated in semi‐arid environments, where tomato may be subject to salt stress. Since the relationship between the two stresses —salinity and parasitism – has been poorly investigated in tomato, the effects of P. aegyptiaca parasitism on tomato growing under moderate salinity were examined. Tomatoes were grown with regular or saline water irrigation (3 and 45 mM Cl?, respectively) in soils infested with P. aegyptiaca . The infested plants accumulated higher levels of sodium and chloride ions in the roots, shoots and leaves (old and young) under both salinity levels vs. non‐infected plants. There was a positive linear correlation between P. aegyptiaca biomass and salt accumulation in young tomato leaves, and a negative linear correlation between parasite biomass and the osmotic potential of young tomato leaves. Concentrations of the osmoprotectants proline, myoinositol and sucrose were reduced in infected tomato plants, which impaired the host's osmotic adjustment ability. The sensitivity of P. aegyptiaca to salt stress was manifested as a decrease in biomass. In conclusion, P. aegyptiaca parasitism reduced the salt tolerance of tomato plants by promoting the accumulation of salts from the rhizosphere and impairing the host's osmotic adjustment ability.  相似文献   

20.
Plants are able to cope with herbivores by inducing defensive traits or growth responses that allow them to reduce or avoid the impact of herbivores. Since above‐ and belowground herbivores differ substantially in life‐history traits, for example feeding types, and their spatial distribution, it is likely that they induce different responses in plants. Moreover, strong interactive effects on defense and plant growth are expected when above‐ and belowground herbivores are jointly present. The strengths and directions of these responses have been scarcely addressed in the literature. Using Taraxacum officinale, the root‐feeding nematode Meloidogyne hapla and the locust Schistocerca gregaria as a model species, we examined to what degree above‐ and belowground herbivory affect (1) plant growth responses, (2) the induction of plant defensive traits, that is, leaf trichomes, and (3) changes in dispersal‐related seed traits and seed germination. We compared the performance of plants originating from different populations to address whether plant responses are conserved across putative different genotypes. Overall, aboveground herbivory resulted in increased plant biomass. Root herbivory had no effect on plant growth. Plants exposed to the two herbivores showed fewer leaf trichomes than plants challenged only by one herbivore and consequently experienced greater aboveground herbivory. In addition, herbivory had effects that reached beyond the individual plant by modifying seed morphology, producing seeds with longer pappus, and germination success.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号