首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cultured human epidermal cells were studied by cell sorting and autoradiography after different 3H-thymidine (3H-dThd)-labelling procedures and after labelling with DNA precursors that are incorporated via salvage or de novo pathways. It was shown that 3H-dThd incorporation was the best measure of the rate of DNA replication. Dose-response experiments with pulse and continuous labelling revealed that all S- and G2-phase cells were cycling, whereas some 20% of the cells stayed in G1-phase for long periods of time. Most, if not all of these cells were probably non-proliferating differentiated keratinocytes. At least two subpopulations of S-phase cells could be discriminated on the basis of the rate of incorporation of DNA precursors. the difference in precursor incorporation did not seem to be caused by differences in nucleotide metabolism but rather to reflect true differences in the rate of DNA replication. Continuous labelling experiments showed that these subpopulations also were apparent in the G1- and G2-phases. Studies of the grain-count distribution revealed that cells that appeared to move rapidly through the S-phase moved slowly through the G2-phase, and vice versa. Cells stained with acridine orange were subjected to a two-parameter analysis in the cell sorter by simultaneous measurement of the DNA and RNA fluorescence. Autoradiography of sorted cells revealed that, on average, cells with low RNA contents incorporated 3H-dThd at a higher rate than cells with high RNA contents.  相似文献   

2.
Mitkova AV  Biswas EE  Biswas SB 《Biochemistry》2002,41(16):5255-5265
Plasmid DNA replication in nuclear extracts of Saccharomyces cerevisiae in vitro has been shown to be S-phase specific, similar to that observed in vivo. We report here a reconstituted in vitro system with partially purified replication proteins, purified replication protein A (RPA), and recombinant proliferating cell nuclear antigen (PCNA). Nuclear extracts from S-phase, G(1)-phase, and unsynchronized yeast cells were fractionated by phosphocellulose chromatography. Protein fraction (polymerase fraction) enriched with replication proteins, including DNA polymerases (alpha, delta, etc.), was isolated, which was not capable of in vitro replication of supercoiled plasmid DNA. However, when purified yeast RPA and recombinant PCNA together were added to the polymerase fraction obtained from S-phase synchronized cells, in vitro plasmid DNA replication was restored. In vitro plasmid DNA replication with polymerase fractions from unsynchronized and G(1)-phase cells could not be reconstituted upon addition of purified RPA and PCNA. RPA and PCNA isolated from various phases of the cell cycle complemented the S-phase polymerase pool to the same extent. Reconstituted systems with the S-phase polymerase pool, complemented with either the RPA- and PCNA-containing fraction or purified RPA and recombinant PCNA together, were able to produce replication intermediates (ranging in size from 50 to 1500 bp) similar to that observed with the S-phase nuclear extract. Results presented here demonstrate that both RPA and PCNA are cell cycle-independent in their ability to stimulate in vitro plasmid DNA replication, whereas replication factors in the polymerase fractions are strictly S-phase dependent.  相似文献   

3.
4.
Mouse fibroblast L-929 cells synchonized by mitotic selection were irradiated during the G1-phase of the cell cycle with a dose of 1000 rad. The rat of DNA synthesis was measured by 3H-thymidine incorporation, and the progression of the cells through the cell cycle was determined using a pulse-cytophotometer. Irradiation caused a decrease in the rate of DNA synthesis to half the control value, and an extension of the S-phase to twice its normal duration.  相似文献   

5.
Incorporation of 3H-thymidine during organ culture was studied in duodenal biopsies from 14 patients. Pulse-label at various intervals disclosed active incorporations during the first 2 h in culture. Labelling index declined to low levels at 3-4 h. Thereafter incorporation increased again and persisted throughout the rest of the culture period of 11 h. The DNA synthesis rate of crypt cells between 4 and 11 h in culture was calculated in 5 patients after pulse-label and continuous labelling of explants in parallel culture. The rate of entry into DNA synthesis was about 24 cells per 1,000 crypt cells per hour in flat, coeliac biopsies, versus 9-13 in controls, Gluten did not influence DNA synthesis rate, whereas wheat germ lectin inhibited DNA synthesis. Counting of the total number of mitoses and labelled fraction of mitoses disclosed active crypt cell renewal in flat, coeliac biopsies. In normal-appearing biopsies no mitoses were labelled, indicating delayed exit from S-phase or long duration of G2-phase in these explants.  相似文献   

6.
7.
Summary BHK21/C1 cells, starved for 30 h in serum deficient medium and treated for 15 h with 1 mm hydroxyurea (HU) in order to obtain a synchronous cell population in the G1/S-boundary, incorporate a residual proportion of 3H-thymidine (dThd). This residual incorporation is due to semiconservative synthesis and may not be reduced by increasing the drug concentration without affecting the reversion capacity of the cells proportionally. As shown by autoradiographic analysis, the residual DNA synthesis does not correspond to 3H-dThd incorporation within a small number of resistant cells, but is located in the nuclei of a high proportion of cells with reduced density of silver grains. After treatment with 0.05 mm HU, however, the incorporation of 3H-dThd increases considerably over the control values. The determination of the radioactivity incorporated by µg DNA corresponding to nuclei in S phase indicates that this concentration of HU is also able to reduce the rate of DNA polymerization. Kinetic data on the appearance of this increased 3H-dThd incorporation and on the accumulation of labelled nuclei in cells growing at random and labelled continuously with the radioactive DNA precursor indicate that HU stimulates the cells to enter the S phase. The reported results are consistent with a mechanism of action of HU which affects initiation and elongation of DNA chains separately.  相似文献   

8.
Mitotic cells could be well discriminated from the cells in the G1-, S- and G2-phases of the cell cycle using pulse labeling of S-phase cells with bromodeoxy-uridine (BrdUrd) and staining of the cells for incorporated BrdUrd and total DNA content. Unlabeled G2- and M-phase cells could be measured as two separate peaks according to propidium iodide fluorescence. M-phase cells showed lower propidium iodide fluorescence emission compared to G2-phase cells. The fluorescence difference of M- and G2-phase cells was caused by the different thermal denaturation of their DNA. Best separation of M- and G2-phase cells was obtained after 30-50 min heat treatment at 95 degrees C. Mitotic index could be measured if no unlabeled S-phase cells were present in the cell culture. With additional measurements of 90 degree scatter and/or forward scatter signals, mitotic cells could be clearly discriminated from both unlabeled G2- and S-phase cells. The correct discrimination (about 99%) of mitotic cells from interphase cells was verified by visual analysis of the nuclear morphology after selective sorting. Unlabeled and labeled mitotic cells could be observed as pulse-labeled cells progressed through the cell cycle. We conclude that this modified BrdUrd/DNA technique using prolonged thermal denaturation and the simultaneous measurement of scatter signals may offer additional information especially in the presence of BrdUrd-unlabeled S-phase cells.  相似文献   

9.
A mechanism of apoptotic death of normal rat embryo fibroblasts and of those transformed by E1A + cHa-Ras oncogenes following gamma irradiation has been investigated. The E1A + cHa-Ras transformed cells were shown to express wild type p53 which was able to trans-activate a reporter pG13-luc Plasmid. As a result of trans-activation, an accumulation of universal inhibitor of cyclin-dependent kinases--p21/Waf1 protein and an increase in the proportion of p21/Waf1 expressing cells were observed, The accumulated p21/Waf1 was found to bind with PCNA. The association with PCNA, however, did not lead to suppression of DNA replication according to the data of iododeoxyuridine (IdUr) incorporation. A high proportion of S-phase cells, in combination with cell cycle blocking in G2-phase, promoted polyploidization of E1A + cHa-Ras transformed cells after gamma irradiation. The polyploidic cells with DNA content equal and higher than 8c die 48-72 h following irradiation due to apoptosis. A significant proportion of E1A + cHa-Ras cells with incorporated IdUr contains labeled micronuclei, the fact being a morphological evidence of apoptosis of cells in S-phase of the cell cycle.  相似文献   

10.
Bromodeoxyuridine (BrdUrd) incorporation and flow cytometry were used to measure human tumour kinetic parameters in vitro and in vivo. The technique was validated by comparison of labelling index estimates of mouse tumours in vivo and in vitro using BrdUrd and flow cytometry with tritiated thymidine (3HdThd) autoradiography. Similar labelling indices were obtained with both in vivo and in vitro incorporation into DNA of the two different precursors. Measurements of human tumour labelling indices were similar following in vitro incubation with either BrdUrd or 3HdThd. The use of BrdUrd allowed the visualization of a population of S-phase cells that did not appear to incorporate BrdUrd or 3HdThd. The human tumour labelling indices obtained with BrdUrd incorporation were similar to previously reported values using autoradiography studies. Preliminary studies demonstrated that significant human tumour labelling could be achieved with an intravenous injection of 500 mg BrdUrd.  相似文献   

11.
Previous experiments in Xenopus egg extracts identified what appeared to be two independently assembled prereplication complexes (pre-RCs) for DNA replication: the stepwise assembly of ORC, Cdc6, and Mcm onto chromatin, and the FFA-1-mediated recruitment of RPA into foci on chromatin. We have investigated whether both of these pre-RCs can be detected in Chinese hamster ovary (CHO) cells. Early- and late-replicating chromosomal domains were pulse-labeled with halogenated nucleotides and prelabeled cells were synchronized at various times during the following G1-phase. The recruitment of Mcm2 and RPA to these domains was examined in relation to the formation of a nuclear envelope, specification of the dihydrofolate reductase (DHFR) replication origin and entry into S-phase. Mcm2 was loaded gradually and cumulatively onto both early- and late-replicating chromatin from late telophase throughout G1-phase. During S-phase, detectable Mcm2 was rapidly excluded from PCNA-containing active replication forks. By contrast, detergent-resistant RPA foci were undetectable until the onset of S-phase, when RPA joined only the earliest-firing replicons. During S-phase, RPA was present with PCNA specifically at active replication forks. Together, our data are consistent with a role for Mcm proteins, but not RPA, in the formation of mammalian pre-RCs during early G1-phase.  相似文献   

12.
Nuclear matrices were isolated from plasmodia of a true slime mold, Physarum polycephalum, and the DNA synthetic activity in vitro was examined. These matrices isolated in S-phase catalyzed DNA synthesis requiring Mg2+, deoxyribonucleoside 5'-triphosphates and ATP, without exogenous templates. The activity changed during S-phase with the rate of in vivo DNA replication. Product analysis by gel electrophoresis revealed that the matrices produced Okazaki fragments. These results suggest that DNA synthesis partially reflects in vivo DNA replication. DNA synthesis was sensitive to aphidicolin, heparin and N-ethylmaleimide, indicating involvement of the alpha-like DNA polymerase of Physarum. Exogenous addition of activated DNA stimulated DNA synthesis 4-10-fold and suggested that only some of the existing enzymes are involved in endogenous DNA synthesis. Matrices isolated in G2-phase were also associated with a similar DNA synthetic activity, but they did not produce Okazaki fragments in vitro. It is, therefore, concluded that nuclear matrices are associated with alpha-like DNA polymerase throughout the cell cycle, and that some of the enzymes participate in in vivo DNA replication in S-phase; thus, DNA replication is possibly controlled by this process. The relationship between DNA synthetic activities by the isolated nuclei and matrices was also discussed.  相似文献   

13.
14.
Incorporation of the nucleic acid precursors, orotic acid, adenosine, thymidine, and uridine, was studied in various stages of intraerythrocytic Plasmodium knowlesi from infected rhesus monkeys. Incubation of the parasitized erythrocytes with the precursors was for 3 hr periods using a plasma-free culture medium. The samples containing primarily rings, early trophozoites, or late trophozoites incorporated orotic acid, adenosine, and uridine into RNA; however, these stages exhibited negligible or very low levels of incorporation of any of the precursors into DNA. The sample containing late trophozoite and schizont stages incorporated orotic acid, adenosine, and uridine into RNA, and orotic acid, adenosine, and very low levels of thymidine into DNA. These results indicate that DNA synthesis (the S phase of the cell cycle) occurs very close to the time of nuclear division, and that either the G1 or G2 phase is very short in P. knowlesi. It was also observed that adenosine and orotic acid, 2 precursors which are incorporated into both DNA and RNA, are utilized differently by the intraerythrocytic parasites. Incorporation of orotic acid into RNA and DNA and adenosine incorporation into DNA were continuous for the entire incubation period, whereas incorporation of adenosine into RNA was very low during the last 2 hr of each period. It was further demonstrated that the parasites utilized exogenous uridine for synthesis of RNA, and that the older parasite stages incorporated thymidine into DNA.  相似文献   

15.
The present study was undertaken to characterize primary epithelial cultures obtained from human skin explants as experimental systems for studies of the differentiation process. When human skin explants were incubated at 34-35 degrees C, fibroblastic growth was strongly inhibited, whereas the epithelial growth proceeded unchanged. The lateral growth of the epithelial cells could be divided into two phases - a migratory and a proliferative one. Only cultures incubated at 35 degrees C or below completed the morphological differentiation process before sloughing, whereas no qualitative difference in protein synthesis was observed between cultures incubated at temperatures from 33-37 degrees C. Cultured epidermal cells were labelled with 3H-thymidine and analysed by flow cytometry and cell sorting. Cells sorted from the S- and G2-phase populations were further analysed by autoradiography and a considerable heterogeneity as to the nuclear labelling was disclosed. A large fraction of S-phase cells were found to be totally unlabelled. The grain count distributions revealed similar cell cycle subpopulations as have been shown to occur in vivo. The relationship of these subpopulations to the differentiation process is discussed.  相似文献   

16.
Recently we shown that low doses (0.12-0.46 Gy) of (methyl-3H)-thymidine incorporated into human endothelial cells induce the accumulation cells in G2-phase of the cell cycle. The temperate doses of (1-6 Gy) gamma-rays 137Cs were less effective in the induction of the G2-block estimated by flow cytometry analysis of DNA content and in the induction of the chromosome aberrations (bridges and fragments in anaphase). The aim of this study was the comparative investigation of efficiency of beta-rays emitted 3H from 3H-thymidine and 3H2O by several of the cellular parameters. Here we shown that at the equal conditions of the incubation of the cells in medium with 3H2O induced the accumulation cells in S-phase without decreasing of the mitotic activity and without increasing of the chromosome aberrations level. Unlike from 3H2O the incubation of the cells with 3H-thymidine induced the accumulation cells in G2-phase with decrease of the mitotic activity and with increase of the chromosome aberrations level. Concurrent treatment cells with 3H-thymidine and thymidine abrogate these cellular effects of the 3H-thymidine. Inhibitor ATM-kinase caffeine abrogate as G2-block as S-phase block. These results suggest that the low-dose beta-radiation activates S-phase and G2-phase checkpoints requiring ATM-mediated signal transduction pathway. The factors, which impact on the efficiency of the internal and of the external sources of the irradiation, depend on theirs disposition in relation to radiosensitive target--DNA was discussed.  相似文献   

17.
Nuclear membrane permeabilization is required for replication of quiescent (G0) cell nuclei inXenopusegg extract. We now demonstrate that establishment of replication competence in G0 nuclei is dependent upon a positive activity present in the soluble egg extract. Our hypothesis is that G0 nuclei lose the license to replicate following growth arrest and that this positive activity is required for relicensing DNA for replication. To determine if G0 nuclei contain licensed DNA, we used the protein kinase inhibitor, 6-dimethylaminopurine (6-DMAP), to prepare egg extracts that are devoid of licensing activity. Intact nuclei, isolated from mammalian cells synchronized in G1-phase (licensed), G2-phase (unlicensed), and G0 were permeabilized and assayed for replication in 6-DMAP-treated and untreated extracts supplemented with [α-32P]dATP or biotinylated-dUTP. Very little radioactivity was incorporated into nascent DNA in each nuclear population; however, nearly all nuclei in each population incorporated biotin in 6-DMAP extract. The pattern of biotin incorporation within these nuclei was strikingly similar to the punctate pattern observed within nuclei incubated in aphidicolin-treated extract, suggesting that initiation events occur within most replication factories in 6-DMAP extract. However, density substitution and alkaline gel analyses indicate that the incorporated biotin within these nuclei arises from a small number of active origins which escape 6-DMAP inhibition. We conclude that 6-DMAP-treated egg extract cannot differentiate licensed from unlicensed mammalian somatic cell nuclei and, therefore, cannot be used to determine the “licensed state” of G0 nuclei using the assays described here.  相似文献   

18.
A cell-free nuclear replication system that is S-phase specific, that requires the activity of DNA polymerase alpha, and that is stimulated three- to eightfold by cytoplasmic factors from S-phase cells was used to examine the temporal specificity of chromosomal DNA synthesis in vitro. Temporal specificity of DNA synthesis in isolated nuclei was assessed directly by examining the replication of restriction fragments derived from the amplified 200-kilobase dihydrofolate reductase domain of methotrexate-resistant CHOC 400 cells as a function of the cell cycle. In nuclei prepared from cells collected at the G1/S boundary of the cell cycle, synthesis of amplified sequences commenced within the immediate dihydrofolate reductase origin region and elongation continued for 60 to 80 min. The order of synthesis of amplified restriction fragments in nuclei from early S-phase cells in vitro appeared to be indistinguishable from that in vivo. Nuclei prepared from CHOC 400 cells poised at later times in the S phase synthesized characteristic subsets of other amplified fragments. The specificity of fragment labeling patterns was stable to short-term storage at 4 degrees C. The occurrence of stimulatory factors in cytosol extracts was cell cycle dependent in that minimal stimulation was observed with early G1-phase extracts, whereas maximal stimulation was observed with cytosol extracts from S-phase cells. Chromosomal synthesis was not observed in nuclei from G1 cells, nor did cytosol extracts from S-phase cells induce chromosomal replication in G1 nuclei. In contrast to chromosomal DNA synthesis, mitochondrial DNA replication in vitro was not stimulated by cytoplasmic factors and occurred at equivalent rates throughout the G1 and S phases. These studies show that chromosomal DNA replication in isolated nuclei is mediated by stable replication forks that are assembled in a temporally specific fashion in vivo and indicate that the synthetic mechanisms observed in vitro accurately reflect those operative in vivo.  相似文献   

19.
Surface binding of anti-actin IgG alone or in a Mr = 716 000 [(IgG)2Protein A]2 complex results in a stimulation of DNA synthesis and cell growth in L cells. Cyclic-AMP (0.01–1.0 mM) added to such cell cultures augmented DNA synthesis as measured by incorporation of [3H]thymidine into DNA. Theophylline (0.1–1.0 mM), a phosphodiesterase inhibitor which prevents enzymatic breakdown of cAMP, had similar effects, but cGMP (0.01–1.0 μM) reversed the effects of cAMP and theophylline upon DNA synthesis. Analysis of the cell cycle by flow cytometry revealed that antibody produced a shift (7%) of cells from the G1-phase to the S-phase (DNA-synthetic) of the cell cycle at 72 hr of incubation. Addition of cAMP (0.5 mM) to cell cultures, however, produced significant shifts of antibody stimulated cells from G1-phase to S-phase at all time points measured, i.e., 24 (12%),48 (22%),72 hr (23%). Thus, antibody recruited cells into S-phase of the cell cycle and cAMP greatly augmented the effect. These observations suggest that the mechanism of activation of L cell growth by antibody to surface antigens involves a recruitment of cells into the DNA-synthetic phase and that the effect may be mediated by cAMP.  相似文献   

20.
Nuclei in G2 phase of the slime mold Physarum polycephalum, when transplanted, by plasmodial coalescence, into an S-phase plasmodium, failed to start another round of DNA synthesis. In the reciprocal combination, S-phase nuclei in a G2-phase host continued DNA synthesis for several hours without appreciable decrease in rate. It is suggested that the beginning of DNA replication is determined by an event, either during or shortly after mitosis, which renders the chromosomes structurally competent for DNA replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号