首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Summary Theqa-2 gene ofNeurospora crassa encodes catabolic dehydroquinase which catabolizes dehydroquinic acid to dehydroshikimic acid. TheQUTE gene ofAspergillus nidulans corresponds to theqa-2 gene ofN. crassa. The plasmid pEH1 containing theQUTE gene fromA. nidulans was used to transform aqa-2 strain ofN. crassa. In Southern blot analyses, DNAs isolated from these transformants hybridized specifically to theQUTE gene probe. Northern blot analyses indicated thatQUTE mRNA was produced in the transformants. The functional integrity of theQUTE gene inN. crassa was indicated by transformants which had regained the ability to grow on quinic acid as sole carbon source. Enzyme assays indicated that the specific activities of catabolic dehydroquinase induced by quinic acid in the transformants ranged from 4% to 32% of that induced in wild-typeN. crassa. The evidence that theQUTE structural gene ofA. nidulans is inducible when introduced into theN. crassa genome implies that theN. crassa qa activator protein can recognize, at least to a limited extent, DNA binding sequences 5 to theQUTE gene.  相似文献   

2.
3.
4.
Resistance of the pathogenic yeast Candida albicans to the antifungal agent fluconazole is often caused by the overexpression of genes that encode multidrug efflux pumps (CDR1, CDR2, or MDR1). We have undertaken a proteomic approach to gain further insight into the regulatory network controlling efflux pump expression and drug resistance in C. albicans. Three pairs of matched fluconazole-susceptible and resistant clinical C. albicans isolates, in which drug resistance correlated with stable activation of MDR1 or CDR1/2, were analyzed for differences in their protein expression profiles. In two independent, MDR1-overexpressing, strains, additional up-regulated proteins were identified, which are encoded by the YPR127 gene and several members of the IFD (YPL088) gene family. All are putative aldo-keto reductases of unknown function. These proteins were not up-regulated in a fluconazole-resistant strain that overexpressed CDR1 and CDR2 but not MDR1, indicating that expression of the various efflux pumps of C. albicans is controlled by different regulatory networks. To investigate the possible role of YPR127 in the resistance phenotype of the clinical isolates, we constitutively overexpressed the gene in a C. albicans laboratory strain. In addition, the gene was deleted in a C. albicans laboratory strain and in one of the drug-resistant clinical isolates in which it was overexpressed. Neither forced overexpression nor deletion of YPR127 affected the susceptibility of the strains to drugs and other toxic substances, suggesting that the regulatory networks which control the expression of efflux pumps in C. albicans also control genes involved in cellular functions not related to drug resistance.Communicated by D. Y. Thomas  相似文献   

5.
In previous experiments, aStreptomyces aureofaciens gene highly similar to the sporulation-specificwhiB gene ofStreptomyces cœlicolor was identified. By intergrative transformationvia double cross-over, a stable null mutant of thewhiB-homologous gene ofS. aureofaciens was obtained. The disruption blocked differentiation at a stage between the formation of aerial mycelium and the development of mature spores, producing white aerial hyphae without septation. Expression of thewhiB gene was investigated during differentiation by S1 nuclease mapping, using RNA prepared fromS. aureofaciens in various developmental stages. Two putative promoters were identified upstream of thewhiB coding region. The stronger promoter,whiB-P2, was induced at the beginning of aerial mycelium formation, and the weaker promoter,whiB-P1, was expressed fairly constantly during differentiation. No differences in the expression of thewhiB promoters were detected in anrpoZ-disruptedS. aureofaciens strain. The promoter bearing DNA fragment was inserted into the promoter-probe vector pARC1 to produce an expression pattern consistent with the results of direct RNA analysis.  相似文献   

6.
The FDH1 gene of Candida boidinii encodes an NAD+-dependent formate dehydrogenase, which catalyzes the last reaction in the methanol dissimilation pathway. FDH1 expression is strongly induced by methanol, as are the promoters of the genes AOD1 (alcohol oxidase) and DAS1 (dihydroxyacetone synthase). FDH1 expression can be induced by formate when cells are grown on a medium containing glucose as a carbon source, whereas expression of AOD1 and DAS1 is completely repressed in the presence of glucose. Using deletion analyses, we identified two cis-acting regulatory elements, termed UAS-FM and UAS-M, respectively, in the 5 non-coding region of the FDH1 gene. Both elements were necessary for full induction of the FDH1 promoter by methanol, while only the UAS-FM element was required for full induction by formate. Irrespective of whether induction was achieved with methanol or formate, the UAS-FM element enhanced the level of induction of the FDH1 promoter in a manner dependent on the number of copies, but independent of their orientation, and also converted the ACT1 promoter from a constitutive into an inducible element. Our results not only provide a powerful promoter for heterologous gene expression, but also yield insights into the mechanism of regulation of FDH1 expression at the molecular level.Communicated by C. P. Hollenberg  相似文献   

7.
AtJ1, a mitochondrial homologue of theEscherichia coli DnaJ protein   总被引:1,自引:0,他引:1  
The nucleotide sequence of a cDNA clone fromArabidopsis thaliana ecotype Columbia was determined, and the corresponding amino sequence deduced. The open reading frame encodes a protein, AtJ1, of 368 residues with a molecular mass of 41 471 Da and an isoelectric point of 9.2. The predicted sequence contains regions homologous to the J- and cysteine-rich domains ofEscherichia coli DnaJ, but the glycine/phenylalanine-rich region is not present. Based upon Southern analysis,Arabidopsis appears to have a singleatJ1 structural gene. A single species of mRNA, of 1.5 kb, was detected whenArabidopsis poly(A)+ RNA was hybridized with theatJ1 cDNA. The function ofatJ1 was tested by complementation of adnaJ deletion mutant ofE. coli, allowing growth in minimal medium at 44°C. The AtJ1 protein was expressed inE. coli as a fusion with the maltose binding protein. This fusion protein was purified by amylose affinity chromatography, then cleaved by digestion with the activated factor X protease. The recombinant AtJ1 protein was purified to electrophoretic homogeneity.In vitro, recombinant AtJ1 stimulated the ATPase activity of bothE. coli DnaK and maize endosperm cytoplasmic Stress70. The deduced amino acid sequence of AtJ1 contains a potential mitochondrial targeting sequence at the N-terminus. Radioactive recombinant AtJ1 was synthesized inE. coli and purified. When the labeled protein was incubated with intact pea cotyledon mitochondria, it was imported and proteolytically processed in a reaction that depended upon an energized mitochondrial membrane.Abbreviations MBP maltose binding protein - PCR polymerase chain reaction - Stress70c the cytosolic member of the 70 kDA family of stress-related proteins  相似文献   

8.
9.
To elucidate the genetic system that establishes homologous chromosome pairing in monocot plants, we have isolated an asynaptic mutant of rice, designated pair2 (homologous pairing aberration in rice meiosis 2), in which 24 completely unpaired univalents are observed at pachytene and diakinesis. The mutation was caused by an insertion of the retrotransposon Tos17, as demonstrated by complementation of the mutation by transformation with the corresponding wild-type gene. The gene in which the element was inserted is orthologous to the ASY1 gene of Arabidopsis thaliana and the HOP1 gene of Saccharomyces cerevisiae. Mature PAIR2 mRNA and several splicing variants were found to be highly expressed in wild-type reproductive tissues, and lower expression was also detected in vegetative tissues. In situ hybridization and BrdU incorporation experiments revealed that PAIR2 expression is specifically enhanced in male and female meiocytes, but not in those at pre-meiotic S phase or in the pollen maturation stages. The results obtained in this study suggest that the PAIR2 gene is essential for homologous chromosome pairing in meiosis, as in the case of the genes ASY1 and HOP1. The study also suggested the possibility that a highly homologous copy of the PAIR2 gene located on a different chromosome is in fact a pseudogene.Communicated by G. Jürgens  相似文献   

10.
The strength of the H-Y antigen on thymus cells and on skin was compared in differentH-2-congenic mouse strains using a host-versus-graft reaction popliteal lymph node assay, and skin grafts from males of parental strains grafted to F1 hybrid females. The results revealed considerable differences in the strength of the H-Y antigen among different congenic strains; these differences demonstrate the effect of theH-2-linked gene on the expression of the H-Y antigen. The linkage withH-2 was also confirmed in tests with segregating F2 generations. In the strains bearing recombinantH-2 haplotypes, the strength of the H-Y antigen is similar to that of parental strain from which the recombinant received itsK end, and the responsible gene (or genes) map to the left ofI-C. The effect of theH-2-linked gene(s) on thymus cells and skin is different. The gene linked to theK end ofH- 2b determines a strong H-Y antigen on thymus cells, but a relatively weak H-Y antigen on skin. The gene linked to theK end ofH- 2k determines a weak H-Y antigen on thymus cells, but a strong H-Y antigen on skin. The gene linked to theK end ofH- 2d determines a weak H-Y antigen on both thymus cells and skin. Our observations raise the possibility that the structural gene for the H-Y antigen is linked toH-2. Alternative (but not exclusive) explanations invoke regulatory effects ofH-2 on the expression of the H-Y antigen, possibly by means of the control of the cellular andogen receptors.  相似文献   

11.
Wang L  An C  Qian W  Liu T  Li J  Chen Z 《Plant cell reports》2004,22(7):513-518
A rice PAL (phenylalanine ammonia-lyase) gene sequence (rPAL-P5), which is highly similar to and likely the same as a previously described rice ZB8PAL gene, including the 5-upstream and exon I coding regions of PAL, was isolated using PCR amplification. The expression of several PALs, including rPAL-P5, was strongly induced following inoculation with Pyricularia oryzae or treatment with a P. oryzae elicitor. To identify the promoter region induced by the P. oryzae elicitor, we constructed and subsequently transformed rPAL-P5 promoter deletion series into rice calli using particle bombardment. Results from both elicitor-inducible reporter gene and gel mobility shift assays demonstrated that the sequence –349 to –256 of the rPAL-P5 promoter includes a cis-element involved in the induction of P. oryzae.Abbreviations CTAB Cetyltrimethylammonium bromide - 2,4-D 2,4-Dichlorophenoxyacetic acid - GUS -Glucuronidase - 4-MU 4-Methylumbelliferone - 4-MUG 4-Methylumbelliferyl glucuronide - NOS Nopaline synthase - PAL Phenylalanine ammonia-lyase Communicated by J.C. Register III  相似文献   

12.
Two new recombinant haplotypes of the rat major histocompatibility system,RT1, have been detected in [LEW.1A (RT1 a ) ×LEW.1W (RT1 u )] × LEW 1N(RT1 n ) segregating hybrids. Recombinantr3 carries theRTL1. A region (determining classical transplantation antigens) and theRT1.B region (determining strong mixed lymphocyte reactivity and genetic control of antipolypeptide immune responsiveness) of the RT1a parent, bur rejects RT1a skin grafts. Recombinantr4 carries theA andB regions of the RT1u parent, but rejects RT1u skin grafts. The two histocompatibility genes detected are allelic to each other. The relevant locus, designated asH-C, maps to theB-region side of theRT1 system and appears to mark a thirdRT1 gene region,RT1.C. Availability of haplotypes r3 andr4 allowed the definition of a histocompatibility locus in theB region,H-B. The products ofH-C, H-B and of the previously describedH-A gene vary in antigenic strength.  相似文献   

13.
14.
A gene designatedswin1.1 has been isolated by screening aSalix viminalis genomic library with a heterologous probe,win3 fromPopulus. The region sequenced included the entire coding sequence for a protein with 199 amino acids plus the promoter and terminator. At the 5 end of the coding region is a sequence that encodes a hydrophobic region of 25–30 amino acids, that could form a signal peptide. A putative TATAA box and polyadenylator sequence were identified. Introns were absent. The gene product showed similarities with serine protease inhibitors from the Kunitz family and especially withwin3 from wounded leaves ofPopulus. Southern blot analysis indicated thatswin1.1 is a member of a clustered gene family,swin1. An oligonucleotide corresponding to the putative hypervariable region to-wards the carboxyl end when used as a probe in Southern hybridization showed high specificity forswin1.1. Expression of theswin1.1 gene was enhanced in wounded leaves. Theswin1.1 coding region without the signal sequence was highly expressed inEscherichia coli and the protein showed inhibitory activity against trypsin but at most slight activity against the other proteases tested. A systemically induced protein, SVTI, with inhibitor activity against trypsin, was isolated fromSalix leaves by affinity chromatography on a column of trypsin-Sepharose 4B and N-terminal sequenced. It corresponded with the translatedswin1.1 gene at 16 of the 19 amino acid sites, suggesting that SVTI is encoded by another member of theswin1 gene family.  相似文献   

15.
The pmm gene from Vibrio furnissii, which encodes phosphomannomutase (PMM), was cloned and sequenced. The open reading frame consisted of 1,434 bp, encoding a polypeptide of 477 amino acids with a molecular mass of 53,325 Da. The predicted amino acid sequence of V. furnissii PMM showed high similarity with PMMs from other enteric bacteria, such as V. cholerae, Salmonella sp. and Escherichia coli. The PMM protein was overexpressed in E. coli as a His6-tagged recombinant protein. The estimated apparent Km and kcat values of the purified recombinant protein for mannose 1-phosphate were about 60 M and 800 min–1, respectively. To investigate the biochemical functions and the role of pmm in the virulence of V. furnissii, a pmm knock-out mutant was constructed by homologous recombination mutation. Under the various physical conditions, cell numbers of the wild-type and the mutant did not differ. Oral introduction of bacterial suspensions to a mouse model showed that the pmm-deficient mutant decreased in viability at the intestine. Microscopy of the isolated intestines from mice revealed significant damage after 3 days in intestinal mucosa infected with the wild-type as compared with the mutant. The pmm-deficient mutant caused a reduction of virulence in mice and the loss of O-antigen polysaccharide, and showed low resistance relative to the wild-type when incubated with normal human serum.  相似文献   

16.
The insensitivity ofCitrobacter freundii to the E colicins is based on tolerance to colicin E1 and resistance to colicins E2 and E3. Spontaneous colicin A resistant mutants ofC. freundii also lost their colicin E1 receptor function. Sensitivity to colicin E1 can be induced by F′gal + tol + plasmids, thetol A+ gene product of which is responsible for this effect. Receptor function for colicins E2 and E3 is induced by theE. coli F′14bfe + plasmid, which is also able to enhance notably the receptor capacity for colicin E1. Thebfe + gene product ofE. coli, which is responsible for these phenomena, also restores the receptor function for colicin A and E1 in colicin A resistant mutants ofC. freundii. All results show that there is a remarkable difference between theE. coli bfe + gene product and thebfe + gene product ofC. freundii and also between thetol A+ gene products of these strains. The sensitivity to phage BF23 parallels the sensitivity to colicins E2 and E3 and is also induced by the F′14bfe + plasmid.  相似文献   

17.
Common non-waxy (Wx) rice cultivars contain two different alleles at the waxy locus, designated Wx a and Wx b, which encode different levels of granule-bound starch synthases and are hence involved in the control of endosperm amylose content. The Wx a allele was predominant in non-waxy indica cultivars, whereas the Wx b allele was common to the non-waxy japonica variety. Recently, some of the molecular mechanisms underlying the differentiation of Wx a from Wx b have been characterized. One structural difference between these two alleles was shown to be due to alternative splicing caused by a single-base substitution (AGGT to AGTT) at a donor site of the first intron within the Wx gene. In the case of waxy (wx) rice, it was not possible to distinguish whether the each wx allele was derived from Wx a or Wx b alleles by phenotypic analysis. However, we succeeded in developing a derived cleaved amplified polymorphic sequence (dCAPS) marker for the detection of the one-base splicing mutation without the need for sequencing. A mismatch primer was used to generate a restriction site in the Wx a allele (AGGT) but not in the Wx b allele (AGTT). Three hundred fifty-three waxy rice strains that are widely found in Asia were then employed for analysis using this dCAPS marker. Our findings suggested that waxy rice strains have both Wx a- and Wx b-derived alleles, but that the Wx b-derived allele was predominant, and its distribution was independent of indica-japonica differentiation. The wild relatives of cultivated rice all possessed the AGGT allele. It was concluded that the waxy mutations, and the corresponding rice cultivation, originated from japonica during the evolution and domestication process of rice and was preferentially selected by most Asian peoples.Communicated by J. Heslop-Harrison  相似文献   

18.
The parthenocarpic fruit (pat) gene of tomato is a recessive mutation conferring parthenocarpy, which is the capability of a plant to set seedless fruits in the absence of pollination and fertilization. Parthenocarpic mutants offer a useful method to regulate fruit production and a suitable experimental system to study ovary and fruit development. In order to map the Pat locus, two populations segregating from the interspecific cross Lycopersicon esculentum × Lycopersicon pennellii were grown, and progeny plants were classified as parthenocarpic or wild-type by taking into account some characteristic aberrations affecting mutant anthers and ovules. Through bulk segregant analysis, we searched for both random and mapped AFLPs linked to the target gene. In this way, the Pat locus was assigned to the long arm of chromosome 3, as also confirmed by the analysis of a set of L. pennellii substitution and introgression lines. Afterwards, the Pat position was refined by using simple sequence repeats (SSRs) and conserved ortholog set (COS) markers mapping in the target region. The tightest COSs were converted into CAPS or SCAR markers. At present, two co-dominant SCAR markers encompassing a genetic window of 1.2 cM flank the Pat locus. Considering that these markers are orthologous to Arabidopsis genes, a positional cloning exploiting the tomato-Arabidopsis microsynteny seems to be a short-term objective.Communicated by F. Salamini  相似文献   

19.
20.
Characterization of embryo globulins encoded by the maizeGlb genes   总被引:8,自引:0,他引:8  
Two of the most abundant proteins in maize embryos are saline-soluble, water-insoluble globulins. One is aM r 63,000 protein encoded by theGlbl gene and the other is aM r 45,000 component encoded by theGlb2 gene. Both proteins accumulate to high levels during embryo development and are rapidly degraded during the early stages of seed germination. Amino acid composition analysis indicates that these proteins may serve as storage reserves to provide sources of nitrogen and carbon to the germinating embryo. Amino-terminal sequence analysis of the finalGlb1 gene product, GLB1, and its immediate precursor, GLB1′, indicates that the latter is proteolytically cleaved near the amino terminus to form GLB1. In addition to these biochemical studies, we describe the identification of a novel maize variant which lacks the protein product of theGlb2 gene. This contribution from the University of Illinois Agricultural Experiment Station was supported by grants from The Standard Oil Corporation, a wholly owned subsidiary of BP America, Inc., and the U.S. Department of Agriculture (No. 88-37262-3427).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号