首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chicken immature red blood cells were incubated for 1 hour in Swim's medium containing 3H-acetate and 10 mM n-butyrate. During the incubation period, the small percentage of dynamically acetylated and deacetylated histone is radiolabeled and hyperacetylated. A second effect of the n-butyrate incubation is to shift a small subset of nucleohistone into a soluble form. This chromatin is predominantly polynucleosome size (approximately dimer to pentamer) and can be separated from soluble mononucleosomes by 5-30% sucrose gradient centrifugation. The soluble polynucleosomes are 25-30 fold enriched for adult beta-globin (beta A) DNA and contain the hyperacetylated histones. We have tested whether histone hyperacetylation is responsible for the enhanced beta-globin chromatin solubility by in vitro deacetylation of the soluble chromatin histones. This procedure converts the beta-globin polynucleosomes to an insoluble form, demonstrating that histone hyperacetylation is in fact directly responsible for the increased solubility of the beta A chromatin.  相似文献   

2.
The structural properties of barley oligonucleosomes are investigated and compared to those of rat liver oligomers. Extraction of barley chromatin was performed using mild nuclease digestion of isolated nuclei leading to a low ionic strength soluble fraction. Oligonucleosomes were fractionated on sucrose gradients and characterized for DNA and histone content. Physico-chemical studies (sedimentation, circular dichroism and electric birefringence) showed that barley oligonucleosomes exhibit properties very close to those of the H1-depleted rat liver counterparts. Moreover, in situ, barley linker DNA was more sensitive to micrococcal nuclease digestion than that of rat liver. These results suggest that barley oligonucleosomes show a less compact structure than their rat liver counterparts and appear to be in contradiction with the very condensed organization of barley chromatin previously suggested.  相似文献   

3.
Properties of chromatin subunits from developing trout testis.   总被引:5,自引:0,他引:5  
When a sample of trout testis nuclei is digested with micrococcal nuclease, the DNA is cleaved almost entirely to discrete fragments approximately 200 base pairs long and multiples thereof. The same DNA fragments can be obtained when isolated chromatin, as opposed to intact nuclei, is nuclease digested. These DNA fragments can also be found in discrete chromatin "subunits" isolated from nuclease-digested nuclei. Sedimentation through sucrose gradients or velocity sedimentation in an analytical ultracentrifuge separates these chromatin subunits into 11 S (monomer), 16 S (dimer), and 22 S (trimer) etc. species. Subunits can also be fractionated on a Sepharose 2B column equilibrated and run in low salt. High salt (greater than 40 mM NaCl) or divalent cations (congruent to 5 mM) cause subunit precipitation. Chromatin subunits have a protein to DNA ratio of approximately 1.2 and contain all the histones, including the trout-specific histone T. There are, however, no detectable nonhistone chromosomal proteins. Mg-2+ precipitates of the 11 S chromatin monomers, when pelleted, are thin and clear, while oligomer Mg-2+ pellets are thick and white. This could reflect a more symmetrical or ordered packing of 11 S monomers, which are deficient in histone I. This histone may cross-link the larger oligomers, resulting in a disordered Mg-2+ complex. These results are consistent with the subunit model of chromatin structure, based on 200 base pair long regions of DNA associated with histones. These subunits would be separated by nuclease-sensitive DNA spacer regions and cross-linked by histone I.  相似文献   

4.
Histone oligomers produced by formaldehyde treatment of chromatin were studied. It was shown that these histone oligomers could be converted into monomers by boiling in 0.1 NH2SO4. Dimers H2B-H4 and H2B-H2A were identified by two-dimensional polyacrylamide gel electrophoresis.Abbreviations. Histones Nomenclature H1 formerly histone F1 - H2B formerly histone F2b - H2A formerly histone F2a2 - H3 formerly histone F3 - H4 formerly histone F2a1 This nomenclature has been proposed at the recent Symposium on the Structure and Function of Chromatin. Ciba Foundation. London. April 1974.  相似文献   

5.
6.
Changes of chromosomal basic proteins of rats have been followed during transformation of spermatids into spermatozoa in the testis and during maturation of spermatozoa in the epididymis. Rat testis chromatin has been fractionated on the basis of differing sensitivity to shearing, yielding a soluble fraction and a condensed fraction. The sperm histone is found in the condense fraction. Somatic-type histones are found in both fractions. The somatic-type histones in the condensed fraction contains much more lysine-rich histone I, than does the somatic-type histones in the soluble fraction. This may suggest that the lysine-rich histone I is the last histone to be displaced during the replacement of somatic-type histones by sperm histone. After extensive shearing followed by sucrose centrifugation, the condensed portion of testis chromatin can be further fractionated into two morphologically distinctive fractions. One is a heavy fraction possessing an elongated shape typical of the head of late spermatids. The other is a light fraction which is presumably derived from spermatids at earlier stages of chromatin condensation and which is seen as a beaded structure in the light microscope. Sperm histone of testis chromatin can be extractable completely by guanidinium chloride without a thiol, wheras 2-mercaptoethanol is required for extraction of sperm histone from caput and cauda epididymal spermatozoa. The light fraction of the condensed testis chromatin contains unmodified and monophospho-sperm histone. The sperm histones of the heavy fraction is mainly of monophospho and diphospho species, whereas unmodified and monophosphosperm histones are found in caput and cauda epididymal spermatozoa. Labeling of cysteine sulfhydryl groups of sperm histone releases by 2-mercaptoethanol treatment shows that essentially all of the cysteine residues of sperm histone in testis chromatin are present as sulfhydryl groups, while those of sperm histone isolated from mature (cauda epididymal) spermatozoa are present as disulfide forms and approximately 50% of the cysteine residues of sperm histone obtained from caput epididymal spermatozoa are in disulfide forms. These results suggest that phosphorylation of sperm histone is involved in the process of chromatin condensation during transformation of spermatozoa in the epididymis.  相似文献   

7.
W M Bonner  R S Wu  H T Panusz  C Muneses 《Biochemistry》1988,27(17):6542-6550
Procedures are presented which permit the identification and analysis of cellular histone that is not bound to chromatin. This histone, called soluble histone, could be distinguished from that bound to chromatin by the state of H4 modification and the lack of H2A ubiquitination. Changes in the levels of newly synthesized soluble histone were analyzed with respect to the balance between histone and DNA synthesis in hamster ovary cells. Pulse-chase protocols suggested that the chase of newly synthesized histone from the soluble fraction into chromatin may have two kinetic components with half-depletion times of about 1 and 40 min. When protein synthesis was inhibited, the pulse-chase kinetics of newly synthesized histone from the solubl fraction into chromatin were not significantly altered from those of the control. However, in contrast to the control, when protein synthesis was inhibited, DNA synthesis was also inhibited with kinetics similar to those of the chase of newly synthesized histone from the soluble fraction. There was a rapid decrease in the rate of DNA synthesis with a half-deceleration time of 1 min down to about 30% of the control rate, followed by a slower decrease with an approximate half-deceleration time of 40 min. When DNA synthesis was inhibited, newly synthesized histone accumulated in the soluble fraction, but H2A and H2B continued to complex with chromatin at a significant rate. Soluble histone in G1 cells showed the same differential partitioning of H4/H3 and H2A/H2B between the soluble and chromatin-bound fractions as was found in cycling cells with inhibited DNA synthesis. These results support a unified model of reciprocal regulatory mechanisms between histone and DNA synthesis in the assembly of chromatin.  相似文献   

8.
9.
The histone lysine methyltransferases catalyze the transfer of methyl groups from S-adenosylmethionine to specific epsilon-N-lysine residues in the N-terminal regions of histones H3 and H4. These enzymes are located exclusively within the nucleus and are firmly bound to chromatin. The chromosomal bound enzymes do not methylate free or nonspecifically associated histones, while histones H3 and H4 within newly synthesized chromatin are methylated. These enzymes can be solubilized by limited digestion (10-16%) of chromosomal DNA from rapidly proliferating rat brain chromatin with micrococcal nuclease. Histone H3 lysine methyltransferase remained associated with a short DNA fragment throughout purification. Dissociation of the enzyme from the DNA fragment with DNAase digestion resulted in complete loss of enzyme activity; however, when this enzyme remained associated with DNA it was quite stable. Activity of the dissociated enzyme could not be restored upon the addition of sheared calf thymus or Escherichia coli DNA. Histone H3 lysine methyltransferase was found to methylate lysine residues in chromosomal bound or soluble histone H3, while H3 associated with mature nucleosomes was not methylated. The histone H4 lysine methyltransferase which was detectable in the crude nuclease digest was extremely labile, losing all activity upon further purification. We isolated a methyltransferase by DEAE-cellulose chromatography, which would transfer methyl groups to arginine residues in soluble histone H4. However, this enzyme would not methylate nucleosomal or chromosomal bound histone H4, nor were methylated arginine nucleosomal or chromosomal bound histone H4, nor were methylated arginine residues detectable upon incubating intact nuclei or chromatin with S-adenosylmethionine.  相似文献   

10.
11.
12.
Structure of the (H2A-H2B-H3-H4)2 histone octamer isolated from calf thymus chromatin at ionic strength 0.1 to 4.0 M NaCl, pH 7.6, was studied spectrofluorometrically. Sensitivity of lambda max tyrosine fluorescence position to structural changes of histone oligomers and to the processes of their association was shown. It were detect two ranges of cooperative changes in histone optical parameters at 0.6-1.4 M NaCl (transition I) and at 2.4-3.4 M NaCl (transition II): Transition I corresponds to the formation of equilibrium system (hexamer) + (dimer) in equilibrium octamer. Transition II corresponds to the structural changes of the histone octamer. Thus, fluorescence anisotropy increases, lambda max for fluorescence spectrum is shifted to the longer wavelengths, contributions of two components to fluorescence decay change, a fraction of fluorescence accessible to the quenching by I- decreases. Histone octamer formation is characterized by making specific contacts between the (H2A-H2B) dimer and (H3-H4)2 tetramer. These contacts are realized at gradual changing of ionic strengths (by dialysis). In the case of abrupt local changes of the environment the process is irreversibly shifted to formation of unspecific high molecular aggregates. The important function role for energetically degenerated states of histone oligomers, energy barriers between which can be overcome by changing total conditions of histone microenvironment in chromatin is discussed.  相似文献   

13.
The telomere binding protein (TP) from the macronucleus of the ciliateEuplotes eurystomus was purified by removal of tenaciously bound DNA with hydroxylapatite, and the purified TP partially sequences. Rabbit antiserum was generated against a synthetic peptide of 14 amino acids at the amino-terminus of the TP. This antiserum was employed to examine the accessibility of TP antigenic determinants in nuclei and chromatin. Immunofluorescent staining of isolated macronuclei revealed only weak reactivity with specific antiserum. Reactivity within replication bands was demonstrated, and could be augumented by preparation of nuclear scaffolds. Employing a dot immunoblot analysis, the amino-terminal antigenic determinants of TP were revealed after extraction of histone H1 (and some nonhistones). A different aspect of TP inaccessibility was demonstrated by immunoblot analysis of trypsin-treated macronuclei and chromatin; TP was considerably less susceptible to digestion by trypsin than were histones H1 and H3. The relative inaccessibility of TP was not a consequence of chromatin higher-order structure, since soluble macronuclear chromatin in low salt exhibited the same burying of antigenic determinants by dot blot analysis, and the same decreased susceptibility to trypsin, as did isolated nuclei. Electron microscopy of soluble macronuclear chromatin spread in low salt revealed that most telomeres appear unfolded, without stable higher-order structure. The mechanisms for the relative inaccessibility of TP are not yet known, but probably arise as a consequence of the strong interactions of TP with the telomere nucleotide sequence and additional interactions of TP with various chromatin proteins, perhaps including histone H1.  相似文献   

14.
15.
Nuclear mono- and poly(ADP-ribosyl) protein conjugates formed in living hepatoma AH 7974 cells in response to treatment with the alkylating agent dimethyl sulfate have been studied. They were isolated from the perchloric acid precipitate of freshly prepared nuclei in a relatively pure form and with an overall yield of more than 80%, utilizing aminophenylboronic acid-agarose chromatography. Exposure of the cells to 400 microM dimethyl sulfate led to a transient rise of ADP-ribosylated proteins. After 20 min, the level of endogenous poly(ADP-ribosyl) residues increased by a factor of 21, amounting to a final value of 772 +/- 57 pmol/mg of DNA while the mono(ADP-ribosyl) residues were raised to even higher concentrations (1864 pmol/mg of DNA), corresponding to a 12-fold stimulation as compared to untreated cells. As a result of dimethyl sulfate treatment, the amount of acceptor protein being modified by (ADP-ribose)n was elevated 15-fold, reaching a final proportion of 2.3 +/- 0.4% of total nuclear protein. The increase in (ADP-ribosyl)n-modified proteins was suppressed by benzamide, a potent inhibitor of poly(ADP-ribose) synthetase. More than half of the nuclear mono- and poly(ADP-ribosyl) residues were linked to histone H2B. The modifying residues could be removed from the major acceptor by treatment with 0.1 M NaOH, but not with neutral hydroxylamine. Minor amounts of other histones, especially of histone H4, were possibly also ADP-ribosylated under the stimulating effect of dimethyl sulfate. In addition, several nonhistone proteins with apparent molecular masses of 100-116 and 170 kDa were found to carry substantial amounts of mono- and poly(ADP-ribose).  相似文献   

16.
The level of histone adenosine diphospho (ADP) ribosylation was studied in isolated nuclei from mouse myeloma cells in culture. The cells were treated with dimethylsulfate (DMS), a DNA-methylating agent, and histones were analyzed using two-dimensional gel electrophoresis. Seventeen or more bands probably representing mono-to heptadeca (ADP-ribosylated) histones could be visualized for each major variant histone. DMS treatment, by increasing the number of chromatin sites undergoing repair, greatly enhanced histone ADP-ribosylation. When histones were labeled in a cell lysate rather than in isolated nuclei, mono- and oligo(ADP-ribosylated) histone forms prevailed. The presence of approximately 87 ADP-ribosylated variant histone forms in cell lysates and of approximately 170 in isolated nuclei is shown for the first time in this work. Previous studies show multiple ADP-ribosylated forms for only histone H1. The theoretical number of variegated nucleosomes is thus much higher than previously thought, provided that histone-histone contacts are not disrupted at up to a certain level of histone ADP-ribosylation.  相似文献   

17.
Reale A  Malanga M  Zardo G  Strom R  Scovassi AI  Farina B  Caiafa P 《Biochemistry》2000,39(34):10413-10418
It is well-known that H1-H1 interactions are very important for the induction of 30 nm chromatin fiber and that, among all posttranslational modifications, poly(ADP-ribosyl)ation is one of those capable of modifying chromatin structure, mainly through H1 histone. As this protein can undergo both covalent and noncovalent modifications by poly(ADP-ribosyl)ation, our aim was to investigate whether and how ADP-ribose polymers, by themselves, are able to affect the formation of H1-H1 oligomers, which are normally present in a condensed chromatin structure. The results obtained in our in vitro experimental system indicate that ADP-ribose polymers are involved in chromatin decondensation. This conclusion was reached as the result of two different observations: (a) H1 histone molecules can be hosted in clusters on ADP-ribose polymers, as shown by their ability to be chemically cross-linked, and (b) H1 histone has a higher affinity for ADP-ribose polymers than for DNA; ADP-ribose polymers compete, in fact, with DNA for H1 histone binding.  相似文献   

18.
The involvement of histone H1 in the formation and maintenance of higher order chromatin structures in vitro was investigated biochemically. Addition of exogenous histone H1 to isolated calf thymus mononucleosomes in low ionic strength buffer resulted in the formation of electrophoretically distinct mononucleosome assemblies (supernucleosomes). The smaller supernucleosomes were composed of about 12, 18, 24, or 30 nucleosomes and one to two molecules of histone H1 per nucleosome. It was difficult to determine accurately the size of the larger supernucleosomes, but their bands from native gels contained probably between 60 and 300 nucleosomes or more. Similar supernucleosome size classes were also obtained when oligonucleosomes instead of mononucleosomes were employed. When the assembly of mono- and oligo-nucleosomes with histone H1 took place in 0.15 M NaCl, discrete supernucleosomes containing only mono- or di-nucleosomes, but not a mixture of both, were formed. It is proposed that the small supernucleosomes containing oligomers of 6 nucleosomes may represent integral multiples of the second-order chromatin structural subunit, whereas the larger supernucleosomes containing about 60 to 300 or more nucleosomes may correspond to chromatin domains or third-order chromatin structures observed by other techniques.  相似文献   

19.
The core structures of sodium dodecyl sulfate extracted, pronase digested paired helical filaments of Alzheimer disease were solubilized by heating in dimethyl sulfoxide. Electron microscopy revealed that after heating in dimethyl sulfoxide, intact paired helical filaments were no longer present in the dimethyl sulfoxide soluble fractions or in the insoluble lipofuscin-containing fractions. Enzyme-linked immunosorbent assays of the various fractions with the monospecific antibody A128 to paired helical filaments demonstrated 96% of the immunoreactivity to be in the dimethyl sulfoxide soluble fraction, and only 4% in the dimethyl sulfoxide insoluble fractions. Lyophilization of the dimethyl sulfoxide soluble supernatant and resuspension in water failed to reassociate the paired helical filaments, but did result in an insoluble precipitate. Analysis of the dimethyl sulfoxide solubilized paired helical filament fraction by nuclear magnetic resonance revealed it to be composed of glycolipid in a form that was distinct from similar fractions isolated from normal aged control brains. The aggregation of an altered glycolipid to form paired helical filaments in Alzheimer disease could explain their insolubility.  相似文献   

20.
Nuclei of spermatozoa of the sea cucumber Holothuria tubulosa contain the five somatic-type histones plus a sperm-specific histone H1 and a unique basic protein phi 0, which is related to H1 in amino acid composition. No proteins of the High Mobility Group (HMG) type have been detected. The structure of this chromatin has been probed nuclease digestion. Its behaviour is anomalous, since two distinct fractions of chromatin are recovered from these spermatozoa, which differ either in the presence or absence of the sperm-specific proteins H1 and phi 0. This heterogeneous distribution is not found in conventional materials, such as calf thymus or chicken erythrocytes. Proteins H1 and phi 0 are not uniformly distributed and may be localized in special regions of chromatin. Fragments containing long stretches of nucleosomes lacking both proteins can be recovered. At the same time, the chromatin fractions which contain these two proteins are shown to be less soluble. When an extensive digestion of chromatin is carried out yielding only nucleosomes and small oligomers, the H1 and phi 0 proteins redistribute themselves on chromatin, the two proteins acting in a cooperative fashion in this process. Cross-linking experiments carried out in whole cells indicate a proximity of phi 0 and H1, whereas no crosslinks have been detected between phi 0 and any of the four nucleosomal histones. The phi 0 protein may thus play a role similar to histone H1 and be only loosely associated with nucleosomal histones, but contribute to the structuration of chromatin during spermiogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号