首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fusion of synaptic vesicles with various target membranes was investigated on the cell-free model system that reflects the final step of exocytosis. Plasma membranes, synaptic vesicles and liposomes were used as acceptor membranes. The process of membrane fusion was triggered by Ca2+. We have demonstrated that synaptic vesicles are prone to fuse with liposomes in buffer solution. This process was strongly dependent on ionic force of medium and phospholipid composition of liposomes. Cytosolic proteins of synaptosomes inhibited the fusion of synaptic vesicles with liposomes, while these were required for the fusion of synaptic vesicles with native membrane structures. Trypsinolysis of acceptor membranes markedly inhibited the fusion response. It means protein components of target membrane are necessary for realization of the final step of exocytosis.  相似文献   

2.
Supramolecular aggregates containing cationic lipids have been widely used as transfection mediators due to their ability to interact with negatively charged DNA molecules and biological membranes. First steps of the process leading to transfection are partly electrostatic, partly hydrophobic interactions of liposomes/lipoplexes with cell and/or endosomal membrane. Negatively charged compounds of biological membranes, namely glycolipids, glycoproteins and phosphatidylserine (PS), are responsible for such events as adsorption, hemifusion, fusion, poration and destabilization of natural membranes upon contact with cationic liposomes/lipoplexes. The present communication describes the dependence of interaction of cationic liposomes with natural and artificial membranes on the negative charge of the target membrane, charges which in most cases were generated by charging the PS content or its exposure. The model for the target membranes were liposomes of variable content of PS or PG (phosphatidylglycerol) and erythrocyte membranes in which the PS and other anionic compound content/exposure was modified in several ways. Membranes of increased anionic phospholipid content displayed increased fusion with DOTAP (1,2-dioleoyl-3-trimethylammoniumpropane) liposomes, while erythrocyte membranes partly depleted of glycocalix, its sialic acid, in particular, showed a decreased fusion ability. The role of the anionic component is also supported by the fact that erythrocyte membrane inside-out vesicles fused easily with cationic liposomes. The data obtained on erythrocyte ghosts of normal and disrupted asymmetry, in particular, those obtained in the presence of Ca2+, indicate the role of lipid flip-flop movement catalyzed by scramblase. The ATP-depletion of erythrocytes also induced an increased sensitivity to hemoglobin leakage upon interactions with DOTAP liposomes. Calcein leakage from anionic liposomes incubated with DOTAP liposomes was also dependent on surface charge of the target membranes. In all experiments with the asymmetric membranes the fusion level markedly increased with an increase of temperature, which supports the role of membrane lipid mobility. The decrease in positive charge by binding of plasmid DNA and the increase in ionic strength decreased the ability of DOTAP liposomes/lipoplexes to fuse with erythrocyte ghosts. Lower pH promotes fusion between erythrocyte ghosts and DOTAP liposomes and lipoplexes. The obtained results indicate that electrostatic interactions together with increased mobility of membrane lipids and susceptibility to form structures of negative curvature play a major role in the fusion of DOTAP liposomes with natural and artificial membranes.  相似文献   

3.
The relation between the immune-reaction of phosphatidylcholine liposomes containing spin-labeled galactosyl ceramide with or without cholesterol and the topographical distribution of the glycolipid in membranes was studied. In egg yolk phosphatidylcholine liposomes, both immune agglutination and antibody binding occurred, irrespectively of the presence of cholesterol, though the motion of the fatty acyl chain of spin-labeled galactosyl ceramide was restricted by cholesterol. In dipalmitoyl phosphatidylcholine liposomes, unlike in egg yolk phosphatidylcholine liposomes, the immune-reaction depended on the cholesterol content. The electron spin resonance (ESR) spectra of spin-labeled galactosyl ceramide in dipalmitoyl phosphatidylcholine liposomes indicated that cholesterol affected the topographical distribution of spin-labeled galactosyl ceramide in the liposomes. Without cholesterol, most of the spin-labeled galactosyl ceramide was clustered on the dipalmitoyl phosphatidylcholine membrane, but with increase of cholesterol, random distribution of hapten on the membrane increased. The cholesterol-dependent change in the topographical distribution of hapten on the membranes was parallel with that of immune reactivity. 'Aggregates' composed solely of galactosyl ceramide did not show any binding activity with antibody. The findings suggest that the recognition of galactosyl ceramide by antibody depended on the topographical distribution of hapten molecules. Phosphatidylcholine and/or cholesterol may play roles as 'spacers' for the proper distribution of 'active' haptens on the membranes. The optimum density of haptens properly distributed on liposomal membranes is discussed.  相似文献   

4.
The mechanism of membrane damage by staphylococcal alpha-toxin was studied using carboxyfluorescein (internal marker)-loaded multilamellar liposomes prepared from various phospholipids and cholesterol. Liposomes composed of phosphatidylcholine or sphingomyelin and cholesterol bound alpha-toxin and released carboxyfluorescein in a dose dependent manner, when they were exposed to alpha-toxin of concentrations higher than 1 or 8 micrograms/ml, respectively. In contrast, the other liposomes composed of phosphatidylethanolamine, phosphatidylserine, phosphatidylglycerol or phosphatidylinositol plus cholesterol were not susceptible to the toxin even at high concentrations up to 870 micrograms/ml. The insensitive liposomes containing either phosphatidylserine or phosphatidylglycerol were made sensitive to alpha-toxin by inserting phosphatidylcholine into the liposomal membranes. In addition, phosphorylcholine inhibited the toxin-induced marker release from liposomes. These results indicated that the choline-containing phospholipids are required for the interaction between alpha-toxin and liposomal membranes. Susceptibility of liposomes containing phosphatidylcholine or sphingomyelin increased with the increase in cholesterol contents of the liposomes. Based on these results, we propose that the choline-containing phospholipids are possible membrane components or structures responsible for the toxin-membrane interaction, which leads to damage of membranes. Furthermore, cholesterol may facilitate the interaction between alpha-toxin and membrane as a structural component of the membrane.  相似文献   

5.
Reconstitution of the glucose transporter from bovine heart   总被引:1,自引:0,他引:1  
Reconstitution of the glucose transporter from heart should be useful as an assay in its purification and in the study of its regulation. We have prepared plasma membranes from bovine heart which display D-glucose reversible binding of cytochalasin B (33 pmol sites/mg protein; Kd = 0.2 muM). The membrane proteins were reconstituted into liposomes by the freeze-thaw procedure. Reconstituted liposomes showed D-glucose transport activity which was stereospecific, saturable and inhibited by cytochalasin B, phloretin, and mercuric chloride. Compared to membrane proteins reconstituted directly, proteins obtained by dispersal of the membranes with low concentrations of cholate or by cholate solubilization showed 1.2- or 2.3-fold higher specific activities for reconstituted transport, respectively. SDS-polyacrylamide gel electrophoresis followed by electrophoretic protein transfer and labeling with antisera prepared against the human erythrocyte transporter identified a single band of about 45 kDa in membranes from both dog and bovine hearts, a size similar to that reported for a number of other glucose transporters in various animals and tissues.  相似文献   

6.
7.
The mobility of phospholipid chains in membranes of liposomes consisting of egg lecitin, cholesterol, dicetylphosphate, sensitized by the lipopolysaccharide antigen F. tularensis by the action of a homologous antiserum and a rabbit complement preparation was studied using 5- and 16-doxylstearate spin probes. It was shown that, during the immune lysis of liposome membranes, changes in the dynamics of spin probes occur, which correlate with the formation of transmembrane channels and exit of the fluorescent marker from the interior of liposomes. It was found that the ratio of the intensities I1/I2 of two low-field extrema in the ESR spectrum is most sensitive to changes in the liposome membrane that are induced by immune components.  相似文献   

8.
MgADP binding to mitochondrial creatine kinase (mtCK) adsorbed on liposomes was induced by the photorelease of caged ADP. The nucleotide binding produced two types of structural changes. One was related to the well-established release of mtCK from the liposomes. The other corresponded to reversible structural changes induced by nucleotide binding to mtCK as demonstrated here. Infrared spectroscopy data show that the MgADP-induced desorption of mtCK from vesicles led to a slight increase in &#102 -helix structures in mtCK at the expense of a small decrease in &#103 -sheet structures and a concomitant increase in the fluidity of the membranes. The desorption of mtCK induced by MgADP and MgATP was almost complete, as shown by centrifugation and enzymatic activity measurements. The photorelease of MgADP in a reactive medium containing phosphocreatine and mtCK associated with liposomes led to nucleotide binding and to the formation of MgATP and creatine. Addition of phosphocreatine also desorbed mtCK from liposomes, while addition of creatine did not. Interpretation of these results would suggest that ADP, ATP or phosphocreatine induce the release of mtCK from membranes, increase the phospholipid bilayer fluidity, and may also decrease the number of contact sites between inner and outer mitochondrial membranes, thus affecting the activity of other mitochondrial enzymes. It is tempting to propose that membrane mtCK binding regulation by nucleotide and PCr concentrations may serve as a physiological adaptation for energy supply.  相似文献   

9.
In the present study, the solubility and enzymatic de-epoxidation of diadinoxanthin (Ddx) was investigated in three different artificial membrane systems: (1) Unilamellar liposomes composed of different concentrations of the bilayer forming lipid phosphatidylcholine (PC) and the inverted hexagonal phase (H(II) phase) forming lipid monogalactosyldiacylglycerol (MGDG), (2) liposomes composed of PC and the H(II) phase forming lipid phosphatidylethanolamine (PE), and (3) an artificial membrane system composed of digalactosyldiacylglycerol (DGDG) and MGDG, which resembles the lipid composition of the natural thylakoid membrane. Our results show that Ddx de-epoxidation strongly depends on the concentration of the inverted hexagonal phase forming lipids MGDG or PE in the liposomes composed of PC or DGDG, thus indicating that the presence of inverted hexagonal structures is essential for Ddx de-epoxidation. The difference observed for the solubilization of Ddx in H(II) phase forming lipids compared with bilayer forming lipids indicates that Ddx is not equally distributed in the liposomes composed of different concentrations of bilayer versus non-bilayer lipids. In artificial membranes with a high percentage of bilayer lipids, a large part of Ddx is located in the membrane bilayer. In membranes composed of equal proportions of bilayer and H(II) phase forming lipids, the majority of the Ddx molecules is located in the inverted hexagonal structures. The significance of the pigment distribution and the three-dimensional structure of the H(II) phase for the de-epoxidation reaction is discussed, and a possible scenario for the lipid dependence of Ddx (and violaxanthin) de-epoxidation in the native thylakoid membrane is proposed.  相似文献   

10.
MgADP binding to mitochondrial creatine kinase (mtCK) adsorbed on liposomes was induced by the photorelease of caged ADP. The nucleotide binding produced two types of structural changes. One was related to the well-established release of mtCK from the liposomes. The other corresponded to reversible structural changes induced by nucleotide binding to mtCK as demonstrated here. Infrared spectroscopy data show that the MgADP-induced desorption of mtCK from vesicles led to a slight increase in alpha-helix structures in mtCK at the expense of a small decrease in beta-sheet structures and a concomitant increase in the fluidity of the membranes. The desorption of mtCK induced by MgADP and MgATP was almost complete, as shown by centrifugation and enzymatic activity measurements. The photorelease of MgADP in a reactive medium containing phosphocreatine and mtCK associated with liposomes led to nucleotide binding and to the formation of MgATP and creatine. Addition of phosphocreatine also desorbed mtCK from liposomes, while addition of creatine did not. Interpretation of these results would suggest that ADP, ATP or phosphocreatine induce the release of mtCK from membranes, increase the phospholipid bilayer fluidity, and may also decrease the number of contact sites between inner and outer mitochondrial membranes, thus affecting the activity of other mitochondrial enzymes. It is tempting to propose that membrane mtCK binding regulation by nucleotide and PCr concentrations may serve as a physiological adaptation for energy supply.  相似文献   

11.
F H Gao  T Abee    W N Konings 《Applied microbiology》1991,57(8):2164-2170
The interaction of the peptide antibiotic nisin with liposomes has been studied. The effect of this interaction was analyzed on the membrane potential (inside negative) and the pH gradient (inside alkaline) in liposomes made from Escherichia coli phosphatidylethanolamine and egg phosphatidylcholine (9:1, wt/wt). The membrane potential and pH gradient were generated by artificial ion gradients or by the oxidation of ascorbate, N,N,N',N'-tetramethyl-p-phenylenediamine, and cytochrome c by the beef heart cytochrome c oxidase incorporated in the liposomal membranes. Nisin dissipated the membrane potential and the pH gradient in both types of liposomes and inhibited oxygen consumption by cytochrome c oxidase in proteoliposomes. The dissipation of the proton motive force in proteoliposomes was only to a minor extent due to a decrease of the oxidase activity by nisin. The results in these model systems show that a membrane potential and/or a pH gradient across the membrane enhances the activity of nisin. Nisin incorporates into the membrane and makes the membrane permeable for ions. As a result, both the membrane potential and pH gradient are dissipated. The activity of nisin was found to be influenced by the phospholipid composition of the liposomal membrane.  相似文献   

12.
The interaction of the peptide antibiotic nisin with liposomes has been studied. The effect of this interaction was analyzed on the membrane potential (inside negative) and the pH gradient (inside alkaline) in liposomes made from Escherichia coli phosphatidylethanolamine and egg phosphatidylcholine (9:1, wt/wt). The membrane potential and pH gradient were generated by artificial ion gradients or by the oxidation of ascorbate, N,N,N',N'-tetramethyl-p-phenylenediamine, and cytochrome c by the beef heart cytochrome c oxidase incorporated in the liposomal membranes. Nisin dissipated the membrane potential and the pH gradient in both types of liposomes and inhibited oxygen consumption by cytochrome c oxidase in proteoliposomes. The dissipation of the proton motive force in proteoliposomes was only to a minor extent due to a decrease of the oxidase activity by nisin. The results in these model systems show that a membrane potential and/or a pH gradient across the membrane enhances the activity of nisin. Nisin incorporates into the membrane and makes the membrane permeable for ions. As a result, both the membrane potential and pH gradient are dissipated. The activity of nisin was found to be influenced by the phospholipid composition of the liposomal membrane.  相似文献   

13.
The membrane-destabilizing effect of the peptide melittin on phosphatidylcholine membranes is modulated by the presence of cholesterol. This investigation shows that inclusion of 40 mol % cholesterol in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine or 1,2-dioleoyl-sn-glycero-3-phosphocholine liposomes reduces melittin's affinity for the membrane. It is significant that the presence of cholesterol does not increase the amount of membrane-associated melittin needed to cause maximum leakage from, or major structural rearrangements of, the liposomes. Furthermore, comparison of microscopy and leakage data suggests that melittin-induced leakage occurs via different mechanisms in the cholesterol-free and cholesterol-supplemented systems. In the absence of cholesterol, leakage of carboxyfluorescein takes place from intact liposomes in a manner compatible with the presence of small melittin-induced pores. In the presence of cholesterol, on the other hand, adsorption of the peptide causes complete membrane disruption and the formation of long-lived open-bilayer structures. Moreover, in the case of cholesterol-supplemented systems, melittin induces pronounced liposome aggregation. Cryotransmission electron microscopy was used, together with ellipsometry, circular dichroism, turbidity, and leakage measurements, to investigate the effects of melittin on phosphatidylcholine membranes in the absence and presence of cholesterol. The melittin partitioning behavior in the membrane systems was estimated by means of steady-state fluorescence spectroscopy measurements.  相似文献   

14.
Lipid vesicles with incorporated ion channels from polyene antibiotic amphotericin B were used to investigate structures of planar membranes formed by Shindler's techniques. A planar membrane assembled on the aperture in a lavsan film from two layers generated at the air-aqueous liposome suspension interface is not a simple bilayer but a bimolecular membrane containing numerous partly fused liposomes. A complete fusion of liposomal membranes with the planar bilayer is an unlikely event during membrane formation. A planar bimolecular lipid membrane without incorporated liposomes can be made by a method consisting of three stages: formation of a lipid layer on the air-water interface of a suspension containing liposomes, transfer of this layer along the surface of the solution into a chamber containing a solution without liposomes where a lipid monomolecular layer forms gradually (within about 20 min) at the air-water interface, assembling of the planar bilayer membrane from this monolayer. The knowledge of the planar membrane structure may be useful in experiments on incorporation of membrane proteins into a planar lipid bilayer.  相似文献   

15.
16.
Liposomes composed of Escherichia coli phospholipid were coated with polysaccharides bearing hydrophobic palmitoyl anchors. The effect on the stability of liposomes without or with integral membrane proteins was investigated. A high concentration of hydrophobized dextrans protected the liposomes against detergent degradation, decreased the fluidity of the membranes, prevented fusion of the liposomes and enhanced their stability. Proteoliposomes containing beef heart cytochrome-c oxidase and the lactose transport carrier of E. coli were similarly affected by coating with the dextrans. Under these conditions both membrane proteins were still active. Long-term stability of the coated liposomes was obtained only in the absence of the integral membrane proteins.  相似文献   

17.
In the present study, the solubility and enzymatic de-epoxidation of diadinoxanthin (Ddx) was investigated in three different artificial membrane systems: (1) Unilamellar liposomes composed of different concentrations of the bilayer forming lipid phosphatidylcholine (PC) and the inverted hexagonal phase (HII phase) forming lipid monogalactosyldiacylglycerol (MGDG), (2) liposomes composed of PC and the HII phase forming lipid phosphatidylethanolamine (PE), and (3) an artificial membrane system composed of digalactosyldiacylglycerol (DGDG) and MGDG, which resembles the lipid composition of the natural thylakoid membrane. Our results show that Ddx de-epoxidation strongly depends on the concentration of the inverted hexagonal phase forming lipids MGDG or PE in the liposomes composed of PC or DGDG, thus indicating that the presence of inverted hexagonal structures is essential for Ddx de-epoxidation. The difference observed for the solubilization of Ddx in HII phase forming lipids compared with bilayer forming lipids indicates that Ddx is not equally distributed in the liposomes composed of different concentrations of bilayer versus non-bilayer lipids. In artificial membranes with a high percentage of bilayer lipids, a large part of Ddx is located in the membrane bilayer. In membranes composed of equal proportions of bilayer and HII phase forming lipids, the majority of the Ddx molecules is located in the inverted hexagonal structures. The significance of the pigment distribution and the three-dimensional structure of the HII phase for the de-epoxidation reaction is discussed, and a possible scenario for the lipid dependence of Ddx (and violaxanthin) de-epoxidation in the native thylakoid membrane is proposed.  相似文献   

18.
The stability of cellular membranes during dehydration can be strongly influenced by the partitioning of amphiphilic solutes from the aqueous phase into the membranes. The effects of partitioning on membrane stability depend in a complex manner on the structural properties of the amphiphiles and on membrane lipid composition. Here, we have investigated the effects of the amphiphilic aromatic amino acids Trp and Phe on membrane stability during freezing. Both amino acids were cryotoxic to isolated chloroplast thylakoid membranes and to large unilamellar liposomes, but Trp had a much stronger effect than Phe. In liposomes, both amino acids induced solute leakage and membrane fusion during freezing. The presence of the chloroplast galactolipids monogalactosyldiacylglycerol or digalactosyldiacylglycerol in egg phosphatidylcholine (EPC) membranes reduced leakage from liposomes during freezing in the presence of up to 5 mM Trp, as compared to membranes composed of pure EPC. The presence of the nonbilayer-forming lipid phosphatidylethanolamine increased leakage. Membrane fusion followed a similar trend, but was dramatically reduced when the anthracycline antibiotic daunomycin was incorporated into the membranes. Daunomycin has been shown to stabilize the bilayer phase of membranes in the presence of nonbilayer lipids and was therefore expected to reduce fusion. Surprisingly, this had only a small influence on leakage. Collectively, these data indicate that Trp and Phe induce solute leakage from liposomes during freezing by a mechanism that is largely independent of fusion events.  相似文献   

19.
The stability of cellular membranes during dehydration can be strongly influenced by the partitioning of amphiphilic solutes from the aqueous phase into the membranes. The effects of partitioning on membrane stability depend in a complex manner on the structural properties of the amphiphiles and on membrane lipid composition. Here, we have investigated the effects of the amphiphilic aromatic amino acids Trp and Phe on membrane stability during freezing. Both amino acids were cryotoxic to isolated chloroplast thylakoid membranes and to large unilamellar liposomes, but Trp had a much stronger effect than Phe. In liposomes, both amino acids induced solute leakage and membrane fusion during freezing. The presence of the chloroplast galactolipids monogalactosyldiacylglycerol or digalactosyldiacylglycerol in egg phosphatidylcholine (EPC) membranes reduced leakage from liposomes during freezing in the presence of up to 5 mM Trp, as compared to membranes composed of pure EPC. The presence of the nonbilayer-forming lipid phosphatidylethanolamine increased leakage. Membrane fusion followed a similar trend, but was dramatically reduced when the anthracycline antibiotic daunomycin was incorporated into the membranes. Daunomycin has been shown to stabilize the bilayer phase of membranes in the presence of nonbilayer lipids and was therefore expected to reduce fusion. Surprisingly, this had only a small influence on leakage. Collectively, these data indicate that Trp and Phe induce solute leakage from liposomes during freezing by a mechanism that is largely independent of fusion events.  相似文献   

20.
A two-dimensional (2D) model of lipid bilayers was developed and used to investigate a possible role of membrane lateral tension in membrane fusion. We found that an increase of lateral tension in contacting monolayers of 2D analogs of liposomes and planar membranes could cause not only hemifusion, but also complete fusion when internal pressure is introduced in the model. With a certain set of model parameters it was possible to induce hemifusion-like structural changes by a tension increase in only one of the two contacting bilayers. The effect of lysolipids was modeled as an insertion of a small number of extra molecules into the cis or trans side of the interacting bilayers at different stages of simulation. It was found that cis insertion arrests fusion and trans insertion has no inhibitory effect on fusion. The possibility of protein participation in tension-driven fusion was tested in simulation, with one of two model liposomes containing a number of structures capable of reducing the area occupied by them in the outer monolayer. It was found that condensation of these structures was sufficient to produce membrane reorganization similar to that observed in simulations with "protein-free" bilayers. These data support the hypothesis that changes in membrane lateral tension may be responsible for fusion in both model phospholipid membranes and in biological protein-mediated fusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号