首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Macroautophagy/autophagy is an intracellular stress survival and recycling system whereas phagocytosis internalizes material from the extracellular milieu; yet, both pathways utilize lysosomes for cargo degradation. Whereas autophagy occurs in all cells, phagocytosis is performed by cell types such as macrophages and the retinal pigment epithelial (RPE) cells of the eye where it is supported by the noncanonical autophagy process termed LC3-associated phagocytosis (LAP). Autophagy and LAP are distinct pathways that use many of the same mediators and must compete for cellular resources, suggesting that cells may regulate both processes under homeostatic and stress conditions. Our data reveal that RPE cells promote LAP through the expression of RUBCN/Rubicon (RUN domain and cysteine-rich domain containing Beclin 1-interacting protein) and suppress autophagy through the activation of EGFR (epidermal growth factor receptor). In the morning when photoreceptor outer segments (POS) phagocytosis and LAP are highest, RUBCN expression is increased. At the same time, outer segment phagocytosis activates the EGFR resulting in MTOR (mechanistic target of rapamycin [serine/threonine kinase]) stimulation, the accumulation of SQSTM1/p62, and the phosphorylation of BECN1 (Beclin 1, autophagy related) on an inhibitory residue thereby suppressing autophagy. Silencing Rubcn, preventing EGFR activity or directly inducing autophagy in RPE cells by starvation inhibits phagocytic degradation of POS. Thus, RPE cells regulate lysosomal pathways during the critical period of POS phagocytosis to support retinal homeostasis.  相似文献   

2.
We have used monospecific antisera to two lysosomal membrane glycoproteins, lgp120 and a similar protein, lgp110, to compare the biosynthesis and intracellular transport of lysosomal membrane components, plasma membrane proteins, and lysosomal enzymes. In J774 cells and NRK cells, newly synthesized lysosomal membrane and plasma membrane proteins (the IgG1/IgG2b Fc receptor or influenza virus hemagglutinin) were transported through the Golgi apparatus (defined by acquisition of resistance to endo-beta-N-acetylglucosaminidase H) with the same kinetics (t1/2 = 11-14 min). In addition, immunoelectron microscopy of normal rat kidney cells showed that lgp120 and vesicular stomatitis virus G-protein were present in the same Golgi cisternae demonstrating that lysosomal and plasma membrane proteins were not sorted either before or during transport through the Golgi apparatus. To define the site at which sorting occurred, we compared the kinetics of transport of lysosomal and plasma membrane proteins and a lysosomal enzyme to their respective destinations. Newly synthesized proteins were detected in dense lysosomes (lgp's and beta-glucuronidase) or on the cell surface (Fc receptor or hemagglutinin) after the same lag period (20-25 min), and accumulated at their final destinations with similar kinetics (t1/2 = 30-45 min), suggesting that these two lgp's are not transported to the plasma membrane before reaching lysosomes. This was further supported by measurements of the transport of membrane-bound endocytic markers from the cell surface to lysosomes, which exhibited additional lag periods of 5-15 min and half-times of 1.5-2 h. The time required for transport of newly synthesized plasma membrane proteins to the cell surface, and for the transport of plasma membrane markers from the cell surface to lysosomes would appear too long to account for the rapid transport of lgp's from the Golgi apparatus to lysosomes. Thus, the observed kinetics suggest that lysosomal membrane proteins are sorted from plasma membrane proteins at a post-Golgi intracellular site, possibly the trans Golgi network, before their delivery to lysosomes.  相似文献   

3.
K Ono 《Histochemistry》1979,62(2):113-124
Ultrastructural localization of acid phosphatase activity was investigated in ultrathin (0.05 micron) and semithin (0.5 and 0.75 micron) sections of the small intestinal epithelial cells of adult rats. The results showed that the enzyme activity was localized on the membrane of microvilli, lateral cell membranes, lysosomes, the Golgi complex, and the GERL of Novikoff (a part of the smooth-surfaced endoplasmic reticulum located in close proximity to the inner Golgi saccules) of duodenal absorptive cells. The lysosomes contained within the duodenal and jejunal absorptive cells appeared to be mainly heterolysosomes rather than autolysosomes. The enzyme activity of absorptive cells was lower in the jejunum than in the duodenum, and was barely detectable except in the GERL and lysosomes of the ileum. The average numbers of lysosomes having a diameter of 0.2 approximately 1.0 microns, per cell profile in sections of 214 duodenal, 226 jejunal and 318 ileal epithelial cells were 8.9 +/- 0.189, 6.4 +/- 0.155 and 3.5 +/- 0.027 (mean +/- SE), respectively. From these results, it was assumed that both the Golgi apparatus and GERL produce some lysosomes in the duodenal and jejunal absorptive cells, but only GERL does so in the ileum. It was considered also that because of an unexpectedly high number of lysosomes containes within the epithelial absorptive cells of the proximal intestine of adult rats, these cells may possess the strong heterophagic, as well as absorptive capacity.  相似文献   

4.
The sequential transformation of chicken monocytes into macrophages, epithelioid cells, and multinucleated giant cells in vitro was studied by electron microscopy after fixation and embedment in situ. The following changes occur. In the nucleus, margination of chromatin, evident in monocytes, decreases in later forms. Nucleoli become more complex and nuclear pores increase in number. In cytoplasm, a progressive increase in volume of the ectoplasm and endoplasm occurs in culture. Lysosomes increase in number and size prior to phagocytosis. During phagocytosis (most active from 1 to 3 days of culture) lysosome depletion occurs. Lysosomes are present in greatest number and show maximal structural variation in the epithelioid and young giant cells. Aging giant cells lose lysosomes. All stages possess variably large quantities of rough-surfaced endoplasmic reticulum and free ribosomes. The Golgi apparatus, small in monocytes, increases in size and complexity. Massive accumulations of lysosomes within the Golgi apparatus of macrophages and epithelioid cells suggest that lysosomes originate there. In giant cells, multiple Golgi regions occur, often ringing the nuclei. Monocytes and macrophages have few mitochondria. Mitochondria of epithelioid cells are larger, more numerous, and may have discontinuous outer membranes. Mitochondria are most numerous in giant cells where they increase with age and become polymorphous. Cytoplasmic filaments are approximately 50 to 60 A in diameter and of indeterminate length. They occur both singly and in bundles which touch cytoplasmic vesicles and mitochondria. Few filaments occur in monocytes and macrophages. A large increase in the number of filaments occurs in epithelioid cells, where filaments (90 to 100 A) surround the cytocentrum as a distinctive annular bundle often branching into the cytoplasm. The greatest concentration of filaments occurs in aged giant cells. Pseudopodia are always present. They are short and filiform in monocytes and giant cells, and broad, with abundant micropinocytotic vesicles, in macrophages and epithelioid cells. At every stage, the cell membrane contains dense cuplike structures. These may represent the membranous residue of lysosomes which have discharged to the outside, analogous to merocrine secretion. Contiguous epithelioid cells display elaborate cytoplasmic interdigitation. In places, the plasma membranes break down and epithelioid cells fuse to form giant cells.  相似文献   

5.
Cytochemical studies with over 40 different mammalian cell types have indicated that NADPase activity is associated with the Golgi apparatus and/or lysosomes of all cells. In the majority of cases, NADPase is restricted to saccular elements comprising the medial region of the Golgi stack and an occasional lysosome. There is often weak NADPase activity in other Golgi compartments such as the trans Golgi saccules and/or elements of the trans Golgi network. In some cells, however, strong NADPase activity is found within these latter compartments, either exclusively in trans Golgi saccules or elements of the trans Golgi network, or in combination with medial Golgi saccules and each other including (1) medial Golgi saccules + trans Golgi saccules, (2) medial Golgi saccules + trans Golgi saccules + trans Golgi network, or (3) trans Golgi saccules + trans Golgi network. In some rare cases, no NADPase activity is detectable in either Golgi saccules or elements of the trans Golgi network, but it is observed in an occasional lysosome or throughout the lysosomal system of these cells. It is unclear at present if these variations in the distribution of NADPase across the Golgi apparatus, and between the Golgi apparatus and lysosomal system, are due to differences in targeting mechanisms or to the existence of "bottlenecks" in the natural flow of NADPase along the biosynthetic pathway toward lysosomes. While no clear pattern in the association of strong NADPase activity with lysosomes was apparent relative to the ultrastructural distribution of NADPase activity in Golgi saccules or elements of the trans Golgi network, the results of this investigation suggested that cells having NADPase localized predominantly toward the trans aspect of the Golgi apparatus (in trans Golgi saccules or elements of the trans Golgi network or both) have few NADPase-positive lysosomes. The only exception is hepatocytes which were classified as predominantly trans but had noticeable NADPase activity within medial Golgi saccules and elements of the trans Golgi network as well, and highly reactive lysosomes. Other cells showing highly reactive lysosomes including (1) Kupffer cells of liver and those forming the proximal convoluted tubules of the kidney, both of which also had strong NADPase activity within medial and trans Golgi saccules and elements of the trans Golgi network, (2) Leydig cells of the testis and interstitial cells of the ovary, which also showed strong NADPase activity within medial Golgi saccules, and (3) macrophages from lung, spleen and testis, and Sertoli cells from the testis all of which showed no Golgi associated NADPase activity.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Summary Electron microscopic cytochemistry was used to determine the localization of five phosphatase enzymes—glucose-6-phosphatase, inosine diphosphatase, thiamine pyrophosphatase, acid phosphatase, and adenosine triphosphatase—in control human testes. Glucose-6-phosphatase occurred in the endoplasmic reticulum and nuclear envelope of Sertoli cells, Leydig cells and primitive spermatogonia, but was not observed in more advanced spermatogenic cells. The presence of glucose-6-phosphatase activity paralleled the presence of glycogen in spermatogenic cells, i.e., both occurred in type AL and AD spermatogonia but not in type AP or B spermatogonia or in more advanced spermatogenic cells. Inosine diphosphatase activity was found in the endoplasmic reticulum, nuclear envelope, and Golgi complex of Sertoli cells and all spermatogenic cells except late spermatids. Additionally, inosine diphosphatase activity was localized at the junctions between Sertoli cells and late spermatids, but was not associated with any other plasma membrane. Thiamine pyrophosphatase reaction product was found in the Golgi bodies of Sertoli cells and in spermatogenic cells through immature spermatids. Neither inosine diphosphatase nor thiamine pyrophosphatase was observed in the Golgi bodies of spermatids during acrosomal formation. Acid phosphatase activity was found in lysosomes of spermatogonia, spermatocytes, and spermatids, in lysosomes of Leydig cells, and in lysosomes, lipofuscin bodies, and Golgi cisternae of Sertoli cells. It is thought that Sertoli lysosomes play a role in the phagocytosis of degenerating germ cells; however, the role of spermatogenic or Leydig lysosomes is unknown. Adenosine triphosphatase activity occurred at the interfaces between two spermatogonia, and between Sertoli cells and spermatogonia, but was not observed in the spaces between two Sertoli cells, two spermatocytes, two spermatids, or between Sertoli cells and spermatocytes, or between Sertoli cells and spermatids.Supported in part by a grant from the U.S. Atomic Energy Commission (AT-(40-1)-4002).  相似文献   

7.
Summary The ultrastructural localization of acid phosphatase activity was investigated in ultrathin (0.05 m) and semithin (0.5 m) sections of the small intestinal epithelial cells of postnatal rats. Until around the 15th day of neonatal life acid phosphatase activity in the duodenal and jejunal epithelial cells was observed on the microvillous membrane, the membrane of the tubulo-vacuolar system, the lateral cell membrane, the lysosomes, the Golgi apparatus and the GERL of Novikoff (1963). After about the 15th neonatal day, the tubulo-vacuolar system enzyme disappeared from both cells. Acid phosphatase activity then became localized on the microvillous membrane, the lateral cell membrane, the lysosomes, the Golgi apparatus, and the GERL, as in adult rats. During the suckling period, acid phosphatase in the ileal cells could be seen on the microvillous membrane, the lateral cell membrane, the Golgi apparatus, the GERL, the membrane of tubulo-vacuolar system and the supranuclear vacuole. At weaning, however, the tubulovacuolar system and the supranuclear vacuole enzyme disappeared, and only the lysosomes and the GERL of these cells showed acid phosphatase activity, as in the adult rat. It was concluded that the acid-phosphatase-containing tubulo-vacuolar system and the supranuclear vacuole in the epithelial cells of the distal intestine of suckling rats may possess a strong phagolysosomal function as well as having an absorptive capacity.  相似文献   

8.
The T cell receptor (TCR) beta-chain is produced in the endoplasmic reticulum where it associates with the TCR alpha-chain and the members of the CD3 complex to form the complete receptor. When the other chains of the complex are not available, the beta-chain is rapidly degraded within the endoplasmic reticulum. When incomplete TCR.CD3 complexes are formed, they are transported through the Golgi apparatus and degraded in lysosomes. In this study, a truncated form of the TCR beta-chain has been made by removal of the transmembrane and cytoplasmic segments. Unlike the normal beta-chain, the truncated molecule is stable and is transported through the Golgi apparatus and secreted. This process occurs at a similar rate in both T and B cells, indicating that it is not affected by the presence or absence of CD3 components. These data suggest that an element in the transmembrane or cytoplasmic region of the beta-chain confers sensitivity to the degradative control mechanisms that regulate TCR expression.  相似文献   

9.
Following removal of the lens through the cornea, early stages of lens regeneration from the dorsal iris of the adult newt, Notophthalmus viridescens, were studied using light and electron microscopic observations on sectioned, plastic-embedded irises. Specimens were fixed in Karnovsky's fixative every 2 days from 0 to 12 and 15 days after lentectomy. Infiltration of the iris epithelium by macrophages and their phagocytosis of melanosomes and small fragments of iris epithelial cells were observed. These macrophages were characterized by coarse nuclear chromatin, numerous mitochondria, free ribosomes, granular endoplasmic reticulum, Golgi complexes, vesicles, lysosomes, and phagosomes containing ingested melanosomes. Lamellipodia of varying length projected from their surface. Most of the cells lying on or close to the posterior surface of the iris could be identified as macrophages by these criteria. During this period, there was enlargement of the intercellular spaces within the iris epithelium. The iris epithelial cells near the margin of the pupil elongated, lost their melanin pigment and some associated cytoplasm, and acquired abundant free polyribosomes to form a lens vesicle of depigmented cells.  相似文献   

10.
Lysosomal enzymes function optimally in acidic environments, and elevation of lysosomal pH can impede their ability to degrade material delivered to lysosomes through autophagy or phagocytosis. We hypothesize that abnormal lysosomal pH is a key aspect in diseases of accumulation and that restoring lysosomal pH will improve cell function. The propensity of nanoparticles to end up in the lysosome makes them an ideal method of delivering drugs to lysosomes. This study asked whether acidic nanoparticles could traffic to lysosomes, lower lysosomal pH and enhance lysosomal degradation by the cultured human retinal pigmented epithelial cell line ARPE-19. Acidic nanoparticles composed of poly (DL-lactide-co-glycolide) (PLGA) 502 H, PLGA 503 H and poly (DL-lactide) (PLA) colocalized to lysosomes of ARPE-19 cells within 60 min. PLGA 503 H and PLA lowered lysosomal pH in cells compromised by the alkalinizing agent chloroquine when measured 1 hr. after treatment, with acidification still observed 12 days later. PLA enhanced binding of Bodipy-pepstatin-A to the active site of cathepsin D in compromised cells. PLA also reduced the cellular levels of opsin and the lipofuscin-like autofluorescence associated with photoreceptor outer segments. These observations suggest the acidification produced by the nanoparticles was functionally effective. In summary, acid nanoparticles lead to a rapid and sustained lowering of lysosomal pH and improved degradative activity.  相似文献   

11.
Cultured cells derived from a mouse adrenocortical tumor transplant are unspecialized in appearance, but produce basal levels of steroids and demonstrate a near-immediate steroidogenic response to ACTH. There is biochemical evidence that ACTH induces increases in the uptake of serum lipoproteins by these cells and that this material is hydrolyzed in lysosomes to free cholesterol, a precursor for steroid end products. To investigate morphologically the role of lysosomes in the steroidogenic activity of these cells, cultures were incubated for 4 h with and without ACTH, then processed for the ultrastructural localization of acid phosphatase (ACPase), a marker enzyme for lysosomes, and for GERL, the lysosome-forming subcompartment of the Golgi, and examined by TEM and HVEM. Steroid output was determined by a fluorometric technique. Unstimulated cells secreted basal levels of steroids. By TEM, large endosomes, some containing semi-compact material and ACPase reaction product, were occasionally seen at the cell periphery and in the Golgi region. The Golgi and GERL were poorly developed. Residual bodies, a few of them ACPase+, appeared in the Golgi region and in microtubule-associated clusters near the cell membrane. ACTH-stimulated cells secreted steroids at 8-10 fold basal values. In TEM records, they displayed numerous ACPase+ endosomes between the cell periphery and the Golgi. The Golgi and GERL regions appeared to be hypertrophied and many large, inclusion-containing, strongly ACPase+ residual bodies appeared here and in elongated microtubule-containing cell processes. HVEM micrographs showed more definitively that ACTH produced distinct increases in the size of GERL and in the number of ACPase+ organelles. Our results suggest that in unstimulated cells, endosomes, presumably containing media-derived material, gain lysosomal enzymes in or near GERL, are transformed to residual bodies as their contents are hydrolyzed, and are subsequently translocated by microtubules to the cell periphery for exocytosis. ACTH appears to intensify all of these effects. The "giant" lysosomes seen in stimulated cells may result from a fusion of smaller lysosomes. Their amorphous contents may reflect an inefficient hydrolysis of LDL to free cholesterol.  相似文献   

12.
The effects of retinoic acid on the differentiation of human monocytic leukemia cell lines containing aneuploid (THP-1-Cs5) or diploid chromosomes (THP-1-R) were studied and compared. The induction of cell adhesion to a substratum, phagocytosis of sheep red blood cells (SRBC) or IgG-coated SRBC, pinocytosis of dextran sulfate, and NBT dye reduction by the cells were examined. The occurrence of these processes was much greater in RA-treated THP-1-Cs5 cells than in RA-treated THP-1-R cells. Of all these functional activities, the most remarkable differences between the two cell types were seen for cell adhesion and phagocytosis of SRBC. Morphological changes in RA-treated THP-1-Cs5 cells were observed by light and electron microscopy. RA-treated THP-1-Cs5 cells had a moderately-developed Golgi apparatus, and abundant lysosomes, mitochondria and lipid droplets in the cytoplasm. Among various retinoids examined, RA was the strongest inducer of the differentiation of the THP-1-Cs5 cells into mature cells. These findings suggest that THP-1-Cs5 cells which contain aneuploid chromosomes are more efficiently functionally differentiated by RA than are THP-1-R cells.  相似文献   

13.
Lysosomal membrane proteins are delivered from their synthesis site, the endoplasmic reticulum (ER) to late endosomes/lysosomes through the Golgi complex. It has been proposed that after leaving the Golgi they are transported either directly or indirectly (via the cell surface) to late endosomes/lysosomes. In the present study, we examined the transport routes taken by two structurally different lysosomal membrane proteins, LGP85 and LGP107, in rat 3Y1-B cells. Here we show that newly synthesized LGP85 and LGP107 are delivered to late endosomes/lysosomes via a direct route without passing through the cell surface. Interestingly, although LGP107 is delivered from the Golgi to early endosomes containing internalized horseradish peroxidase-conjugated transferrin (HRP-Tfn) en route to lysosomes, LGP85 does not pass through the HRP-Tfn-positive early endosomes. These results suggest, therefore, that LGP85 and LGP107 are sorted into distinct transport vesicles at the post-Golgi, presumably the trans-Golgi network (TGN), after which LGP85 is delivered directly to late endosomes/lysosomes, but significant fractions of LGP107 are targeted to early endosomes before transport to late endosomes/lysosomes. This study provides the first evidence that after exiting from the Golgi, LGP85 and LGP107 are targeted to late endosomes/lysosomes via a different pathway.  相似文献   

14.
Intracellular fate of ferritin in HeLa cells following microinjection   总被引:1,自引:0,他引:1  
It is known that following iron overload newly synthesized ferritin molecules accumulate in lysosomes. However, the way in which these molecules enter the lysosomes has not been clarified. In order to assess if these molecules can be taken up by lysosomes from the cell sap, i.e., by way of autophagy, ferritin was introduced into HeLa cells through microinjection with a glass capillary. The fate of the ferritin was studied after varying intervals with the electron microscope. Shortly after microinjection ferritin molecules could be observed in the cell sap. After both 1 and 2 h, they were found in clusters and still mainly in the cell sap. After 4 h, ferritin molecules were present not only in the cell sap and in autophagic vacuoles but also in occasional secondary lysosomes. After 12 h, they were seen mainly in lysosomes, undergoing degradation. In no instance were ferritin molecules translocated into other organelles such as mitochondria, Golgi apparatus, or endoplasmic reticulum. The present study demonstrates that ferritin can be introduced into cells by glass capillary microinjection without cell damage. From its initial location in the cell sap ferritin is taken up into the lysosomal vacuome. Autophagy is considered to be the principal mechanism for the transfer of the ferritin molecules into lysosomes.  相似文献   

15.
Summary Cytochemical studies were performed to clarify the occurrence of an internal polarity of the Golgi apparatus and the relationship between this organelle and GERL in many kinds of cells having different morphologies and functions. The fine structural localizations of thiamine pyrophosphatase (TPPase) and acid phosphatase (AcPase) were examined in anterior pituitary cells, thyroid epithelial cells, gastric chief and parietal cells, duodenal absorptive epithelial cells, hepatocytes, adrenal cortical and medullary cells of mice, and thyroid epithelial cells of domestic fowls. TPPase activity is usually localized in the cisternae of 1–3 stacks and vesicles on the trans-side of the Golgi apparatus of all the cells examined, and in some immature secretory granules of anterior pituitary cells and of gastric chief cells. Rigid lamellae and multivesicular bodies are rarely positive to this reaction, in several kinds of cells. AcPase activity was usually demonstrable in the cisternae of 1–3 stacks and vesicles on the trans-side of the Golgi apparatus, and also in rigid lamellae, coated vesicles, multivesicular bodies and lysosomes in all varieties of cells studied. Some immature secretory granules are positive to the AcPase reaction in anterior pituitary cells and gastric chief cells. The areas positive for both enzyme activities were partially or almost completely overlapping in all the cells examined, though there were minor variations among them. The grades of overlap are classified into three types. Prolonged osmication was performed on thyroid epithelial cells, duodenal absorptive epithelial cells, hepatocytes, adrenal cortical cells, Leydig cells, the epithelial cells of the vas deferens and the theca cells of mice. Cisternae of 1–3 stacks on the cis-side of the Golgi apparatus of all the cells examined were stained with osmium tetroxide. In all these cells we observed that the Golgi apparatus has an internal polarity and that GERL is a part of this organelle in cytochemical respects.This study was supported by grants from the Japan Ministry of Education  相似文献   

16.
Gangliosides, complex glycosphingolipids containing sialic acids, are synthesized in the endoplasmic reticulum and in the Golgi complex. These neobiosynthesized gangliosides move via vesicular transport to the plasma membrane, becoming components of the external leaflet. Gangliosides can undergo endocytosis followed by recycling to the cell surface or sorting to the Golgi complex or lysosomes for remodeling and catabolism. Recently, glycosphingolipid catabolic enzymes (glycohydrolases) have been found to be associated with the plasma membrane, where they display activity on the membrane components. In this work, we demonstrated that ecto-ganglioside glycosyltransferases may catalyze ganglioside synthesis outside the Golgi compartment, particularly at the cell surface. Specifically, we report the first direct evidence of expression and activity of CMP-NeuAc:GM3 sialyltransferase (Sial-T2) at the cell surface of epithelial and melanoma cells, with membrane-integrated ecto-Sial-T2 being able to sialylate endogenously synthesized GM3 ganglioside as well as exogenously incorporated substrate. Interestingly, we also showed that ecto-Sial-T2 was able to synthesize GD3 ganglioside at the cell surface using the endogenously synthesized cytidine monophospho-N-acetylneuraminic acid (CMP-NeuAc) available at the extracellular milieu. In addition, the expression of UDP-GalNAc:LacCer/GM3/GD3 N-acetylgalactosaminyltransferase (GalNAc-T) was also detected at the cell surface of epithelial cells, whose catalytic activity was only observed after feeding the cells with exogenous GM3 substrate. Thus, the relative interplay between the plasma membrane-associated glycosyltransferase and glycohydrolase activities, even when acting on a common substrate, emerges as a potential level of regulation of the local glycosphingolipid composition in response to different external and internal stimuli.  相似文献   

17.
Trypanosoma cruzi has a complex life cycle where two infective developmental stages, known as trypomastigote and amastigote, can be found in the vertebrate host. Both forms can invade a large variety of cellular types and induce the formation of a parasitophorous vacuole (PV), that, posteriorly, disassembles and releases the parasites into the host cell cytoplasm. The biogenesis of T. cruzi PVs has not been analyzed in professional phagocytic cells. We investigated the biogenesis of PVs containing trypomastigotes or amastigotes in peritoneal macrophages. We observed the presence of profiles of the endoplasmic reticulum and lysosomes from the host cell near PVs at early stages of interaction in both developmental stages, suggesting that both organelles may participate as possible membrane donors for the formation of the PVs. The Golgi complex, however, was observed only near already formed PVs. Electron microscopy tomography and FIB-SEM microscopy followed by 3D reconstruction of entire PVs containing amastigotes or trypomastigotes confirmed the presence of both endoplasmic reticulum and lysosomes in the initial stages of PV formation. In addition, Golgi complex and mitochondria localize around PVs during their biogenesis. Taken together these observations provide a whole view of the invasion process in a professional phagocytic cell.  相似文献   

18.
Summary Ultrastructural localization of acid phosphatase activity was investigated in ultrathin (0.05 m) and semithin (0.5 and 0.75 m) sections of the small intestinal epithelial cells of adult rats. The results showed that the enzyme activity was localized on the membrane of microvilli, lateral cell membranes, lysosomes, the Golgi complex, and the GERL of Novikoff (a part of the smooth-surfaced endoplasmic reticulum located in close proximity to the inner Golgi saccules) of duodenal absorptive cells. The lysosomes contained within the duodenal and jejunal absorptive cells appeared to be mainly heterolysosomes rather than autolysosomes. The enzyme activity of absorptive cells was lower in the jejunum than in the duodenum, and was barely detectable except in the GERL and lysosomes of the ileum. The average numbers of lysosomes having a diameter of 0.21.0 m, per cell profile in sections of 214 duodenal, 226 jejunal and 318 ileal epithelial cells were 8.9±0.189, 6.4±0.155 and 3.5±0.027 (mean±SE), respectively. From these results, it was assumed that both the Golgi apparatus and GERL produce some lysosomes in the duodenal and jejunal absorptive cells, but only GERL does so in the ileum. It was considered also that because of an unexpectedly high number of lysosomes contained within the epithelial absorptive cells of the proximal intestine of adult rats, these cells may possess the strong heterophagic, as well as absorptive capacity.  相似文献   

19.
The mechanism by which the intracellular bacterial pathogen Chlamydia trachomatis enters eukaryotic cells is poorly understood. There are conflicting reports of entry occurring by clathrin-dependent and clathrin-independent processes. We report here that C. trachomatis serovar K enters HEp-2 and HeLa 229 epithelial cells and J-774A.1 mouse macrophage/monocyte cells via caveolin-containing sphingolipid and cholesterol-enriched raft microdomains in the host cell plasma membranes. First, filipin and nystatin, drugs that specifically disrupt raft function by cholesterol chelation, each impaired entry of C. trachomatis serovar K. In control experiments, filipin did not impair entry of the same organism by an antibody-mediated opsonic process, nor did it impair entry of BSA-coated microspheres. Second, the chlamydia-containing endocytic vesicles specifically reacted with antisera against the caveolae marker protein caveolin. These vesicles are known to become the inclusions in which parasite replication occurs. They avoid fusion with lysosomes and instead traffic to the Golgi region, where they intercept Golgi-derived vesicles that recycle sphingolipids and cholesterol to the plasma membrane. We also report that late-stage C. trachomatis inclusions continue to display high levels of caveolin, which they likely acquire from the exocytic Golgi vesicles. We suggest that the atypical raft-mediated entry process may have important consequences for the host-pathogen interaction well after entry has occurred. These consequences include enabling the chlamydial vesicle to avoid acidification and fusion with lysosomes, to traffic to the Golgi region, and to intercept sphingolipid-containing vesicles from the Golgi.  相似文献   

20.
Exocrine acinar cells possess two cytochemically distinct populations of secondary lysosomes. One population is Golgi associated and has demonstrable acid phosphatase (AcPase) activity, whereas the second is basally located and lacks AcPase activity but has trimetaphosphatase (TMPase) activity. The basal lysosomes are tubular in shape and rapidly label with horseradish peroxidase (HRP) after intravenous injection. In the present study using isolated rat parotid acinar cells, the two lysosomal populations were separated by cell fractionation on Percoll density gradients and were analyzed biochemically and by EM cytochemistry. On 35% Percoll gradients, two peaks of AcPase and beta-hexosaminidase, both lysosomal marker enzymes, and succinic dehydrogenase, an enzyme marker for mitochondria, could be resolved. The major peaks of beta-hexosaminidase and succinic dehydrogenase and the minor peak of AcPase corresponded with the dense lysosome fraction. The major peak of AcPase and the minor peaks for beta-hexosaminidase and succinic dehydrogenase coincided with the light membrane fraction. Galactosyl transferase (a marker enzyme for Golgi saccules) and 5'-nucleotidase (a plasma membrane marker) were also associated with this fraction. By electron microscopy, the light membrane fraction was seen to contain tubular elements, multivesicular bodies (MVB), Golgi saccules, GERL, immature secretory granules, and some mitochondria. Electron microscopic cytochemical examination showed that these tubular structures were lysosomes. The dense lysosome fraction contained lysosomes positive for both AcPase and TMPase. After continuous incubation of isolated acinar cells with HRP, reaction product was rapidly localized to the light membrane fraction (greater than 2 min), where it was found in vesicles and tubular lysosomes. By 10 min it was present in MVB and tubular lysosomes, but by 60 min no HRP reaction product had appeared in the dense lysosomes. These results demonstrate that the tubular lysosomes are separable from dense lysosomes, typical secondary lysosomes, and are involved in the initial stages of endocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号