首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
RCAS1 expression is related to the regulation of activated immune cells and to connective tissue remodeling within the endometrium. DFF45 seems to play an important role in the apoptotic process, most likely by acting through the regulation of DNA fragmentation. Its expression changes within the endometrium seem to be related to the resistance of endometrial cells to apoptosis. The aim of the present study was to evaluate RCAS1 and DFF45 endometrial expressions during ovulation and the implantation period. RCAS1 and DFF45 expression was assessed by the Western-blot method in endometrial tissue samples obtained from 20 patients. The tissue samples were classified according to the menstrual cycle phases in which they were collected, with a division into three phases: late proliferative, early secretory, and mid-secretory. The lowest level of RCAS1 and the highest level of DFF45 endometrial expression was found during the early secretory cycle phase. Statistically significantly higher RCAS1 and statistically significantly lower DFF45 endometrial expression was identified in the endometrium during the late proliferative as compared to the early secretory cycle phase. Moreover, statistically significantly higher RCAS1 and statistically significantly lower DFF45 expression was found in the endometrium during the mid-secretory as compared to the early secretory cycle phase. The preparation for implantation process in the endometrium is preceded by dynamic changes in endometrial ECM and results from the proper interaction between endometrial and immune cells. The course of this process is conditioned by the immunomodulating activity of endometrial cells and their resistance to immune-mediated apoptosis. These dynamic changes are closely related to RCAS1 and DFF45 expression alterations.  相似文献   

2.
The human plasma sex steroid binding protein (SBP) has been previously shown to be synthesized in liver cells. The hormonal regulation studies of hepatic SBP mRNA demonstrate that it is controlled by estradiol, antiestrogen tamoxifen, dihydrotestosterone, triiodothyronine and insulin in a similar way as secreted SBP. The metabolic inhibitor cycloheximide was unable to prevent the estrogen or thyroid hormone induced increase in SBP mRNA. The slight stimulation of SBP synthesis by estradiol suggests that non-steroidal factors may be involved in its regulation and that the estrogen regulatory mechanism could also be partly post-transcrptional. In endometrial (Ishikawa cells) and prostatic (LNCaP cells) carcinoma cells, SBP mRNA has been detected suggesting that SBP may play a role in the uptake and intracellular mechanism of action of sex steroid in target cells.  相似文献   

3.
4.
Apoptosis plays a significant role in differentiation of many organs and helps to maintain homeostasis. The occurrence of apoptosis (using the apoptotic index) and expression of regulation protein Bcl-2 in the human endometrium was evaluated within the secretory phase of both the natural cycle, and an artificial one. Oral hormonal substitution used in this design induced similar, but more marked dynamic changes in Bcl-2 expression in the mid-secretory endometrium as were observed in the natural cycle, primarily in the surface and glandular epithelium of the endometrium. The apoptosis revealed similar a trend, but not significantly different.  相似文献   

5.
He RH  Sheng JZ  Luo Q  Jin F  Wang B  Qian YL  Zhou CY  Sheng X  Huang HF 《Life sciences》2006,79(5):423-429
The aim of the present study was to examine the expression of aquaporin-2 (AQP2), a member of the water channel family aquaporins (AQPs), in human uterine endometrium and its modulation of ovarian steroid hormone at the proliferative and secretory phases. Western blot, immunohistochemistry, and RT-PCR were employed in the present study. Western blot revealed a 29-kDa band that represented AQP2 in human endometrium. The expression of AQP2 in endometrium was confirmed by RT-PCR and immunohistochemical results. The immunohistochemical analysis demonstrated that AQP2 was prominent in luminal and glandular epithelial cells of endometrium. The levels of endometrial AQP2 expression changed during the menstrual cycle and were higher in the secretory endometrium than in the proliferative endometrium. A significantly high level of AQP2 was detected at the mid-secretory phase. There was a positive correlation between the levels of the endometrial AQP2 expression and the concentrations of the serum 17beta-estradiol (E2) or/and progesterone (P4). These data for the first time corroborate that AQP2 is expressed in human endometrium and that the expression of AQP2 in human endometrium might be regulated by E2 or/and P4. The changed expression of AQP2 at different phases of the menstrual cycle may be essential to reproductive physiology in human. The high level of endometrial AQP2 expression was observed at the mid-secretory phase, the time of embryo implantation, suggesting that AQP2 might play physiological roles in the uterine receptivity.  相似文献   

6.
7.
8.
9.
Steroid hormones regulate endometrial gene expression to meet the needs of developing embryos. Our hypothesis is that steroid hormones transiently induce expression of genes in the endometrial epithelium to make the uterine environment different between the earliest days of pregnancy. We identified one such gene product using differential display-polymerase chain reactions. The gene product that was strongly induced in ewes between day 3 and 6 of the estrous cycle was cloned and sequenced to identify it as encoding a member of the Nudix family of hydrolase enzymes. Northern blot analyses indicated that NUDT16 mRNA concentrations were elevated 10-fold in the endometrium of sheep from day 5 to 9 of the estrous cycle and returned to basal levels by day 11. In assays of RNA samples from 15 different tissues from an adult ewe, the concentrations of NUDT16 mRNA were greatest in endometrium. In situ hybridization localized NUDT16 mRNA exclusively to the endometrial epithelial cells of the glands and uterine lumen. In ovariectomized ewes, NUDT16 mRNA was induced by a regimen of alternating estrogen and progesterone therapy designed to mimic the hormonal experiences of a ewe at day 6 of the estrous cycle. The final estrogen treatment in the regimen was critical to the expression of NUDT16 as well as progesterone receptor and estrogen receptor-beta genes. Characterization of the NUDT16 gene identified putative steroid hormone response elements, which can now be investigated to understand its unique pattern of regulation in the earliest days of pregnancy.  相似文献   

10.
11.
K G Osteen  T L Anderson 《Steroids》1991,56(5):279-283
Although physiologic parameters regulating endometrial proliferation and secretory maturation during the normal menstrual cycle are well characterized, cellular and molecular interactions directing these events under the influence of a changing hormonal milieu remain unclear. In the present study, the effect of estradiol on the growth and acquisition of differentiated function of purified endometrial epithelium was examined in an established model. Epithelial cells were isolated with high purity from human endometrial biopsies. When cultured on a biomatrix bed, cells established a polarized monolayer with gland-like invaginations. Cells isolated throughout the menstrual cycle were cultured under serum-free conditions, with or without estradiol, and secretion of tumor-associated epitope TAG-72 was monitored by radioimmunoassay. Under steroid-free conditions, cells exhibited a distinct proliferative interval, followed by the acquisition of TAG-72 epitope secretory capability. Although estradiol had no apparent effect on proliferation or spatial organization of epithelial cells, a striking inhibition of TAG-72 epitope secretion was evident. This observation is believed to represent a direct effect of estradiol on endometrial epithelial cells in this model.  相似文献   

12.
13.
MHC class I molecules and beta(2)-microglobulin (beta(2)m) are membrane glycoproteins that present peptide Ags to TCRs, and bind to inhibitory and activating receptors on NK cells and other leukocytes. They are involved in the discrimination of self from non-self. Modification of these molecules in the placenta benefits pregnancy, but little is known about their genes in the uterus. We examined the classical class I swine leukocyte Ags (SLA) genes SLA-1, SLA-2, and SLA-3, the nonclassical SLA-6, SLA-7, and SLA-8 genes, and the beta(2)m gene in pig uterus during pregnancy. Uterine SLA and beta(2)m increased in luminal epithelium between days 5 and 9, then decreased between days 15 and 20. By day 15 of pregnancy, SLA and beta(2)m increased in stroma and remained detectable through day 40. To determine effects of estrogens, which are secreted by conceptuses to prevent corpus luteum regression, nonpregnant pigs were treated with estradiol benzoate, which did not affect the SLA or beta(2)m genes. In contrast, progesterone, which is secreted by corpora lutea, increased SLA and beta(2)m in luminal epithelium, whereas a progesterone receptor antagonist (ZK137,316) ablated this up-regulation. To determine effects of conceptus secretory proteins (CSP) containing IFN-delta and IFN-gamma, nonpregnant pigs were implanted with mini-osmotic pumps that delivered CSP to uterine horns. CSP increased SLA and beta(2)m in stroma. Cell-type specific regulation of SLA and beta(2)m genes by progesterone and IFNs suggests that placental secretions control expression of immune regulatory molecules on uterine cells to provide an immunologically favorable environment for survival of the fetal-placental semiallograft.  相似文献   

14.
15.
16.
Phase-dependent apoptotic changes in the human endometrium during an ovarian cycle imply a potential role of steroids in the regulation of apoptosis. The present study was undertaken to determine the direct role of hormones in endometrial apoptosis in marmosets (Callithrix jacchus), a primate species which shows similarity to humans in terms of the cycle length and pattern. Endometrial apoptosis was detected by 3'-end labeling (TUNEL) in various phases of ovarian cycle in naturally cycling healthy marmosets (n=14) and also in ovariectomized marmosets (n=13) treated with either estradiol alone (E) or progesterone alone (P) or estradiol followed by progesterone (E+P). Expressions of apoptosis associated genes such as Bcl-2 family members (Bax and Bcl-2), proliferating cell nuclear antigen (PCNA)--a proliferation marker and steroid receptors, ERalpha and PR A were analysed by immunohistochemical methods. Apoptosis was intense in the glandular epithelial cells of endometrium during the mid-luteal phase as compared to other phases in naturally cycling animals; in the E+P group as compared to other groups of ovariectomized animals (P<0.05). Pronounced apoptosis in the mid-luteal phase was accompanied by the increased expression of Bax in glandular epithelial cells; while Bcl-2 immunoreactivity remained unchanged. PCNA expression was higher in the naturally cycling animals in the follicular phase and in the E group of the ovariectomized animals as compared those in the other groups. Immunoreactive ERalpha and PR A in glandular epithelial cells were most abundant during early follicular phase in naturally cycling animals and in both E and E+P groups among the ovariectomized animals. The present study highlights the importance of apoptosis in endometrial remodeling during the ovarian cycle and secondly, the role of both estradiol and progesterone in the regulation of apoptosis.  相似文献   

17.
Seventy-four women enrolled in an in vitro fertilization (IVF) program had cytologic smears of the vagina, cervix and endometrium obtained at the time of embryo transfer (ET). Of these, 68 vaginal, 46 cervical and 25 endometrial smears were available for cytologic examination. Of the 68 vaginal smears, 4% showed a proliferative pattern, 40% were early secretory and 56% were advanced secretory. The 46 cervical smears demonstrated a delayed hormonal effect, with 70% showing a proliferative pattern, 23% early secretory and 7% advanced secretory cytology. Endometrial cells were obtained only when the Jones catheter, which has a side opening, was used. Twenty-two patients had both vaginal smears and suitable endometrial smears. Of these, 8 of the 9 patients with early secretory vaginal cytology had secretory endometrium while 10 of the 12 patients with mid-secretory vaginal cytology had secretory endometrium. The value of endometrial cytology in predicting conception following IVF-ET is unknown. It seems, however, that a good correlation exists between endometrial and vaginal cytology and that the latter may be of value as an additional, noninvasive tool for the evaluation of endometrial development.  相似文献   

18.
人子宫内膜纤蛋白溶酶元激活因子及其抑制因子...   总被引:3,自引:0,他引:3  
陈贵安  冯强 《生理学报》1992,44(5):502-509
Two types of plasminogen activator (PAs) are present in human endometrium, and their contents vary with the different phases of menstrual cycle, i.e. high in the proliferative phase and low in the secretory phase. In the present study by immunohistochemical technique, both uPA and tPA antigens were demonstrated in the stromal and glandular cells of the endometrium. In cell culture, tPA was released only from stromal cells and uPA only from glandular cells as determined by SDS-PAGE followed by fibrin overlay technique, but PA inhibitor type-1 (PAI-1) was secreted by both stromal and glandular cells. Furthermore, secretion of PAs from endometrial cells was enhanced by adding estradiol and markedly inhibited by progesterone in a dose dependent manner, while the PAI reacted just in the opposite way. The effect of the peptide hormones, hCG, GnRH, PRL, as well as cAMP in cell culture on the secretion of PAs and PAI was similar to that of estradiol, while forskolin demonstrated definitely more stimulative effect on tPA than uPA. Taking into account of the finding of the present study, it appears that, under hormonal control, a balance between PAs and PAI in the endometrium exists. The physiological roles of the PAs and PAI in the endometrium were discussed.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号