首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polymorphism of 11 microsatellite DNA loci was analysed in Polish Red (PR), Hereford and Holstein-Friesian (HF) cattle raised in Poland and genetic distance among these breeds was determined. At the 11 loci (TGLA227, BM2113, TGLA53, ETH10, SPS115, TGLA126, TGLA122, INRA23, ETH3, ETH225 and BM1824) analysed with automated DNA sizing technology, a total of 213 alleles were identified: 76 in PR, 76 in HF, and 61 in Hereford. All the microsatellite DNA markers showed high polymorphism. Polymorphism information content (PIC) calculated for each marker exceeded 0.5, except for the ETH3 locus in Hereford cattle (PIC=0.475), and heterozygosity (H) ranged from 54.1% to as much as 85.2%. The coefficient of genetic distance was 0.354 between PR and Hereford, 0.414 between HF and Hereford, and 0.416 between PR and HF cattle.  相似文献   

2.
With the premium bull plays a growing important role in cattle industry, semen detection technology based on individual identification and phylogenetic relationship is paid more and more attention. In order to lay the foundation for the establishment of the China Holstein bull identification method, this research takes 20 Chinese Holstein dairy bull’s blood and their corresponding semen, and then extracts the DNA both from the blood and semen, analysis the genetic polymorphisms of 10 microsatellite loci (TGLA227, INRA23, TGLA122, BM2113, SPS115, ETH3, ETH225, MCM158, MAF45 and UMN0108) by microsatellite marker, discuss the feasibility of this method used to individual identification. The results showed that Chinese Holstein dairy bull genetic diversity in the ten microsatellite loci were both high, and the average polymorphic information content of TGLA227, which highest, is 0.8162, ETH225 has the lowest, which is 0.6224. Use STR loci to identify the bull’s semen, the cumulative individual identification capacity is 99.99 %, which indication that 10 STR loci can be used to the frozen semen quality test and cows individual identification.  相似文献   

3.
Genetic diversity, introgression and relationships were studied in 521 individuals from 9 African Bos indicus and 3 Bos taurus cattle breeds in Cameroon and Nigeria using genotype information on 28 markers (16 microsatellite, 7 milk protein and 5 blood protein markers). The genotypes of 13 of the 16 microsatellite markers studied on three European (German Angus, German Simmental and German Yellow) and two Indian (Nelore and Ongole) breeds were used to assess the relationships between them and the African breeds. Diversity levels at microsatellite loci were higher in the zebu than in the taurine breeds and were generally similar for protein loci in the breeds in each group. Microsatellite allelic distribution displayed groups of alleles specific to the Indian zebu, African taurine and European taurine. The level of the Indian zebu genetic admixture proportions in the African zebus was higher than the African taurine and European taurine admixture proportions, and ranged from 58.1% to 74.0%. The African taurine breed, Muturu was free of Indian zebu genes while its counter Namchi was highly introgressed (30.2%). Phylogenic reconstruction and principal component analysis indicate close relationships among the zebu breeds in Cameroon and Nigeria and a large genetic divergence between the main cattle groups – African taurine, European taurine and Indian zebu, and a central position for the African zebus. The study presents the first comprehensive information on the hybrid composition of the individual cattle breeds of Cameroon and Nigeria and the genetic relationships existing among them and other breeds outside of Africa. Strong evidence supporting separate domestication events for the Bos species is also provided.  相似文献   

4.
We describe satellite DNA variation that detects hybridization of Bos indicus (zebu or indicine cattle) and Bos taurus (taurine cattle) in African cattle populations. On Southern blots hybridized to a satellite III probe, relative intensities of Hinfl fragments correlated with the taurine-zebu composition in hybrid animals as deduced from AFLP genotyping of the same animals and previous data on microsatellite allele frequencies. Similar results were obtained by PCR-RFLP analysis of a zebu-specific mutation in the repeat unit of satellite 1.711b. Analysis of individuals from 20 African cattle breeds indicate that the centromeric satellites of the sanga breeds are of the taurine type and that several East-African zebu breeds are hybrids between taurine and zebu. These satellite RFLP, or SFLP, markers provide a fast method to screen the genetic makeup of African cattle.  相似文献   

5.
A total of 350 samples were analyzed to estimate zebu gene proportions into two different taurine cattle breeds of Burkina Faso (Lobi and N’Dama) using 38 microsatellites and various statistical methodologies. West African and East African zebu samples were sequentially used as reference parental populations. Furthermore, N’Dama cattle from Congo, the composite South African Bonsmara cattle breed and a pool of European cattle were used successively as second parental populations. Independently of the methodology applied: (a) the use of West African zebu samples gave higher admixture coefficients than the East African zebu; (b) the higher zebu proportions were estimated when the European cattle was used as parental population 2; and (c) the use of the N’Dama population from Congo as parental population 2 gave the more consistent zebu proportion estimates for both the Lobi and the N’Dama breeds. In any case, the zebu admixture proportions estimated were not negligible and were always higher in the N’Dama cattle than in the Lobi cattle of Burkina Faso. This suggested that the introgression of Sahelian zebu genes into the taurine cattle of Southern West Africa can follow a complex pattern that can depend on local agro-ecological features. The current research pointed out that the estimation of admixture coefficients is highly dependent on both the assumptions underlying the methodologies applied and the selection of parental populations. Our analyses suggest that either too high or nil genetic identity between the parental and the expectedly derived populations must be avoided.  相似文献   

6.
In order to assess the applicability of bovine microsatellite markers for population genetic studies in Swiss yak, 131 bovine microsatellite markers were tested on a panel of 10 animals. Efficient amplification was observed for 124 markers (94.6%) with a total of 476 alleles, of which 117 markers (94.3%) were polymorphic. The number of alleles per locus among the polymorphic markers ranged from two to nine. Seven loci (ILSTS005, BMS424B, BMS1825, BMS672, BM1314, ETH123 and BM6017) failed to amplify yak genomic DNA. Two cattle Y-chromosome specific microsatellite markers (INRA126 and BM861) amplified genomic DNA from both male and female yaks. However, two additional markers on cattle Y-chromosome (INRA124 and INRA189) amplified DNA from only males. Of the polymorphic markers, 24 microsatellites proposed by CaDBase for within- and cross-species comparisons and two additional highly polymorphic markers (MHCII and TGLA73) were used to investigate the genetic variability and the population structure of a Swiss yak herd that included 51 additional animals. The polymorphic information content ranged from 0.355 to 0.752, while observed heterozygosity (HO) ranged from 0.348 to 0.823. Furthermore, a set of 13 markers, organized into three multiplex polymerase chain reactions, was evaluated for routine parentage testing. This set provided an exclusion probability in a family of four yaks (both parents and two offspring) of 0.995. These microsatellites serve as useful tools for genetic characterization of the yak, which continues to be an important domestic livestock species.  相似文献   

7.
The POLL locus has been mapped to the centromeric region of bovine chromosome 1 (BTA1) in both taurine breeds and taurine–indicine crosses in an interval of approximately 1 Mb. It has not yet been mapped in pure‐bred zebu cattle. Despite several efforts, neither causative mutations in candidate genes nor a singular diagnostic DNA marker has been identified. In this study, we genotyped a total of 68 Brahman cattle and 20 Hereford cattle informative for the POLL locus for 33 DNA microsatellites, 16 of which we identified de novo from the bovine genome sequence, mapping the POLL locus to the region of the genes IFNAR2 and SYNJ1. The 303‐bp allele of the new microsatellite, CSAFG29, showed strong association with the POLL allele. We then genotyped 855 Brahman cattle for CSAFG29 and confirmed the association between the 303‐bp allele and POLL. To determine whether the same association was found in taurine breeds, we genotyped 334 animals of the Angus, Hereford and Limousin breeds and 376 animals of the Brangus, Droughtmaster and Santa Gertrudis composite taurine–zebu breeds. The association between the 303‐bp allele and POLL was confirmed in these breeds; however, an additional allele (305 bp) was also associated but not fully predictive of POLL. Across the data, CSAFG29 was in sufficient linkage disequilibrium to the POLL allele in Australian Brahman cattle that it could potentially be used as a diagnostic marker in that breed, but this may not be the case in other breeds. Further, we provide confirmatory evidence that the scur phenotype generally occurs in animals that are heterozygous for the POLL allele.  相似文献   

8.
Microsatellite variation was surveyed to determine the genetic diversity, population structure and admixture of seven North Ethiopian cattle breeds by combining multiple microsatellite data sets of Indian and West African zebu, and European, African and Near-Eastern taurine in genetic analyses. Based on allelic distribution, we identified four diagnostic alleles (HEL1-123 bp, CSSM66-201 bp, BM2113-150 bp and ILSTS6-285 bp) specific to the Near-Eastern taurine. Results of genetic relationship and population structure analyses confirmed the previously established marked genetic distinction between taurine and zebu, and indicated further divergence among the bio-geographical groupings of breeds such as North Ethiopian, Indian and West African zebu, and African, European and Near-Eastern taurine. Using the diagnostic alleles for bio-geographical groupings and a Bayesian method for population structure inference, we estimated the genetic influences of major historical introgressions in North Ethiopian cattle. The breeds have been heavily (>90%) influenced by zebu, followed by African, European and the Near-Eastern taurine. Overall, North Ethiopian cattle show a high level of within-population genetic variation (e.g. observed heterozygosity = 0.659-0.687), which is in the upper range of that reported for domestic cattle and indicates their potential for future breeding applications, even in a global context. Rather low but significant population differentiation (F(ST) = 1.1%, P < 0.05) was recorded as a result of multiple introgression events and strong genetic exchanges among the North Ethiopian breeds.  相似文献   

9.

Background

Nelore and Gir are the two most important indicine cattle breeds for production of beef and milk in Brazil. Historical records state that these breeds were introduced in Brazil from the Indian subcontinent, crossed to local taurine cattle in order to quickly increase the population size, and then backcrossed to the original breeds to recover indicine adaptive and productive traits. Previous investigations based on sparse DNA markers detected taurine admixture in these breeds. High-density genome-wide analyses can provide high-resolution information on the genetic composition of current Nelore and Gir populations, estimate more precisely the levels and nature of taurine introgression, and shed light on their history and the strategies that were used to expand these breeds.

Results

We used the high-density Illumina BovineHD BeadChip with more than 777 K single nucleotide polymorphisms (SNPs) that were reduced to 697 115 after quality control filtering to investigate the structure of Nelore and Gir populations and seven other worldwide populations for comparison. Multidimensional scaling and model-based ancestry estimation clearly separated the indicine, European taurine and African taurine ancestries. The average level of taurine introgression in the autosomal genome of Nelore and Gir breeds was less than 1% but was 9% for the Brahman breed. Analyses based on the mitochondrial SNPs present in the Illumina BovineHD BeadChip did not clearly differentiate taurine and indicine haplotype groupings.

Conclusions

The low level of taurine ancestry observed for both Nelore and Gir breeds confirms the historical records of crossbreeding and supports a strong directional selection against taurine haplotypes via backcrossing. Random sampling in production herds across the country and subsequent genotyping would be useful for a more complete view of the admixture levels in the commercial Nelore and Gir populations.

Electronic supplementary material

The online version of this article (doi:10.1186/s12711-015-0109-5) contains supplementary material, which is available to authorized users.  相似文献   

10.
Eight humpless cattle breeds from the Near East, three from Europe, one from West Africa and two zebu breeds from India were screened with 20 microsatellite loci. Breeds from the Near East revealed considerable levels of introgression from zebu cattle, which was apparent most in populations from the East and which declined in populations further West. This nonrandom pattern is suggestive of the introduction of zebu cattle from the East. Notwithstanding the overlay of zebu alleles, it was possible to demonstrate that Near Eastern cattle exhibited significantly higher levels of allelic diversity than breeds from other regions, which is consistent with the view that this region represents a primary domestication centre for Bos taurus cattle. The hypothesis that B. taurus and B. indicus cattle have separate domestic origins is also supported by the survey, a large genetic divergence being apparent between the nonhybrid taurine and zebu groups.  相似文献   

11.
奶牛微卫星基因座与产奶性能关系的研究   总被引:14,自引:1,他引:13  
单雪松  张沅  李宁 《遗传学报》2002,29(5):430-433
根据小鼠与牛的遗传比较图谱及相关报道选择了与weaver基因连锁的7个微卫星基因库,并在荷斯坦牛群体中对这些基因座进行群体遗传学特性分析。选择具有中度以上多态性的4个微卫星基因座(BM6438、BMS2321、BMS711和TGLA116)进行产奶性能的相关分析。最小二乘分析结果表明,4个微卫星基因座对产奶量影响不显著(P>0.05),BM6438生BMS711基因座对乳成分影响不显著(P>0.05),BMS2321基因座对乳蛋白量和乳蛋白率有极显著的影响(P<0.01),TGLA116对乳蛋白量和乳蛋白率的影响达到0.05的显著水平。  相似文献   

12.
Knowledge about genetic diversity and population structure is useful for designing effective strategies to improve the production, management and conservation of farm animal genetic resources. Here, we present a comprehensive genome-wide analysis of genetic diversity, population structure and admixture based on 244 animals sampled from 10 cattle populations in Asia and Africa and genotyped for 69 903 autosomal single-nucleotide polymorphisms (SNPs) mainly derived from the indicine breed. Principal component analysis, STRUCTURE and distance analysis from high-density SNP data clearly revealed that the largest genetic difference occurred between the two domestic lineages (taurine and indicine), whereas Ethiopian cattle populations represent a mosaic of the humped zebu and taurine. Estimation of the genetic influence of zebu and taurine revealed that Ethiopian cattle were characterized by considerable levels of introgression from South Asian zebu, whereas Bangladeshi populations shared very low taurine ancestry. The relationships among Ethiopian cattle populations reflect their history of origin and admixture rather than phenotype-based distinctions. The high within-individual genetic variability observed in Ethiopian cattle represents an untapped opportunity for adaptation to changing environments and for implementation of within-breed genetic improvement schemes. Our results provide a basis for future applications of genome-wide SNP data to exploit the unique genetic makeup of indigenous cattle breeds and to facilitate their improvement and conservation.  相似文献   

13.
In the present report, the polymorphisms from 9 microsatellites were used to assess genetic diversity and relationships in 4 Creole cattle breeds from Argentina and Bolivia, 4 European taurine breeds, and 2 American zebu populations. The Creole populations display a relatively high level of genetic variation as estimated by allelic diversity and heterozygosity, whereas the British breeds displayed reduced levels of genetic diversity. The analysis of molecular variance indicated that 7.8% of variance can be explained by differences among taurine and zebu breeds. Consistent with these results, the first principal component (PC), which comprised the 40% of the total variance, clearly distinguishes these 2 groups. In addition, all constructed phylogenetic trees cluster together Nelore and Brahman breeds with robust bootstrap values. Only 1% of variance was due to difference between American Creole and European taurine cattle. Although this secondary split was supported by the classical genetic distance and the second PC (15%), the topology of trees is not particularly robust. The presence of zebu-specific alleles in Creole cattle allowed estimating a moderate degree of zebu admixture. When these data were compared with mitochondrial and Y chromosomal studies, a clear pattern of male-mediated introgression was revealed. The results presented here contribute to the understanding of origin and history of the American Creole cattle.  相似文献   

14.
Breeding indigenous African taurine cattle tolerant to trypanosomosis is a straightforward approach to control costs generated by this disease. A recent study identified quantitative trait loci (QTL) underlying trypanotolerance traits in experimental crosses between tolerant N'Dama and susceptible Boran zebu cattle. As trypanotolerance is thought to result from local adaptation of indigenous cattle breeds, we propose an alternative and complementary approach to study the genetic architecture of this trait, based on the identification of selection signatures within QTL or candidate genes. A panel of 92 microsatellite markers was genotyped on 509 cattle belonging to four West African trypanotolerant taurine breeds and 10 trypanosusceptible European or African cattle breeds. Some of these markers were located within previously identified QTL regions or candidate genes, while others were chosen in regions assumed to be neutral. A detailed analysis of the genetic structure of these different breeds was carried out to confirm a priori grouping of populations based on previous data. Tests based on the comparison of the observed heterozygosities and variances in microsatellite allelic size among trypanotolerant and trypanosusceptible breeds led to the identification of two significantly less variable microsatellite markers. BM4440, one of these two outlier loci, is located within the confidence interval of a previously described QTL underlying a trypanotolerance-related trait.
Detection of selection signatures appears to be a straightforward approach for unravelling the molecular determinism of trypanosomosis pathogenesis. We expect that a whole genome approach will help confirm these results and achieve a higher resolving power.  相似文献   

15.
We report for the first time, and for the whole of sub-Saharan Africa, the geographical distribution and the frequency of an indicine and a taurine Y specific allele amongst African cattle breeds. A total of 984 males from 69 indigenous African populations from 22 countries were analysed at the microsatellite locus INRA 124. The taurine allele is probably the oldest one on the continent. However, the taurine and the indicine alleles were present in 291 males (30%), and 693 males (70%), respectively. More particularly, 96% of zebu males (n = 470), 50% of taurine males (n = 263), 29% of sanga males (crossbreed Bos taurus x Bos indicus, n = 263) and 95% of zebu x sanga crossbred males (n = 56) had the indicine allele. The Borgou, a breed classified as zebu x taurine cross showed only the zebu allele (n = 12). The indicine allele dominates today in the Abyssinian region, a large part of the Lake Victoria region and the sahelian belt of West Africa. All the sanga males (n = 64) but only one from the Abyssinian region had the indicine allele. The taurine allele is the commonest only among the sanga breeds of the southern African region and the trypanotolerant taurine breeds of West Africa. In West Africa and in the southern Africa regions, zones of introgression were detected with breeds showing both Y chromosome alleles. Our data also reveal a pattern of male zebu introgression in Mozambique and Zimbabwe, probably originating from the Mozambique coast. The sanga cattle from the Lake Victoria region and the Kuri cattle of Lake Chad, cattle populations surrounded by zebu breeds were, surprisingly, completely devoid of the indicine allele. Human migration, phenotypic preferences by the pastoralists, adaptation to specific habitats and to specific diseases are the main factors explaining the present-day distribution of the alleles in sub-Saharan Africa.  相似文献   

16.
Butana and Kenana breeds from Sudan are part of the East African zebu Bos indicus type of cattle. Unlike other indigenous zebu cattle in Africa, they are unique due to their reputation for high milk production and are regarded as dairy cattle, the only ones of their kind on the African continent. In this study, we sequenced the complete mitochondrial DNA (mtDNA) D‐loop of 70 animals to understand the maternal genetic variation, demographic profiles and history of the two breeds in relation to the history of cattle pastoralism on the African continent. Only taurine mtDNA sequences were identified. We found very high mtDNA diversity but low level of maternal genetic structure within and between the two breeds. Bayesian coalescent‐based analysis revealed different historical and demographic profiles for the two breeds, with an earlier population expansion in the Butana vis a vis the Kenana. The maternal ancestral populations of the two breeds may have diverged prior to their introduction into the African continent, with first the arrival of the ancestral Butana population. We also reveal distinct demographic history between the two breeds with the Butana showing a decline in its effective population size (Ne) in the recent past ~590 years. Our results provide new insights on the early history of cattle pastoralism in Sudan indicative of a large ancient effective population size.  相似文献   

17.
Mao Y  Chang H  Yang Z  Zhang L  Xu M  Sun W  Chang G  Song G 《Biochemical genetics》2007,45(3-4):195-209
Levels of genetic differentiation, gene flow, and genetic structure of three indigenous cattle populations (Luxi, Bohai, and Minnan) and two reference cattle populations (Chinese Holstein and Qinhai yak) in China were estimated using the information from 12 microsatellites, and 141 microsatellite alleles were identified. The mean number of alleles per locus ranged from 2.9005 in yak to 4.9722 in Holstein. The observed heterozygosity ranged from 0.5325 (yak) to 0.7719 (Holstein); 29 private alleles were detected. The global heterozygote deficit across all populations amounted to 58.5% (p < 0.001). The overall significant (p < 0.001) deficit of heterozygotes because of inbreeding within breeds amounted to 43.2%. The five cattle populations were highly differentiated (F st = 26.9%, p < 0.001) at all loci. The heterozygote deficit within the population was highest in Luxi cattle and lowest in yak. The average number of effective migrants exchanged per generation was highest (1.149) between Luxi and Holstein, and lowest (0.509) between Luxi and yak. With the application of prior population information, cluster analysis achieved posterior probabilities from 91% to 98% of correctly assigning individuals to populations. Combining the information of cluster analysis, gene flow, and Structure analysis, the five cattle populations belong to three genetic clusters, a taurine (Luxi and Chinese Holstein), a zebu (Bohai and Minnan), and a yak cluster. This indicates that Bohai black is closer to Bos indicus than Luxi cattle. The evolution and development of three indigenous cattle populations are discussed.  相似文献   

18.
The Kenyan East African zebu cattle are valuable and widely used genetic resources. Previous studies using microsatellite loci revealed the complex history of these populations with the presence of taurine and zebu genetic backgrounds. Here, we estimate at genome-wide level the genetic composition and population structure of the East African Shorthorn Zebu (EASZ) of western Kenya. A total of 548 EASZ from 20 sub-locations were genotyped using the Illumina BovineSNP50 v. 1 beadchip. STRUCTURE analysis reveals admixture with Asian zebu, African and European taurine cattle. The EASZ were separated into three categories: substantial (⩾12.5%), moderate (1.56%<X<12.5%) and non-introgressed (⩽1.56%) according to the European taurine genetic proportion. The non-European taurine introgressed animals (n=425) show an unfluctuating zebu and taurine ancestry of 0.84±0.009 s.d. and 0.16±0.009 s.d., respectively, with significant differences in African taurine (AT) and Asian zebu backgrounds across chromosomes (P<0.0001). In contrast, no such differences are observed for the European taurine ancestry (P=0.1357). Excluding European introgressed animals, low and nonsignificant genetic differentiation and isolation by distance are observed among sub-locations (Fst=0.0033, P=0.09; r=0.155, P=0.07). Following a short population expansion, a major reduction in effective population size (Ne) is observed from approximately 240 years ago to present time. Our results support ancient zebu × AT admixture in the EASZ population, subsequently shaped by selection and/or genetic drift, followed by a more recent exotic European cattle introgression.  相似文献   

19.
Beef cattle breeds consist of three major genetic subdivisions. The taurine group is adapted to temperate environments, and the zebu and Sanga groups are both adapted to tropical environments. With the advent of genotyping and sequencing technologies in agriculture, genome-wide exploration of the genetic basis for the differences in tropical adaptation has only just become possible. In this study, approximately 9000 single nucleotide polymorphism markers were genotyped on 317 animals of a selection of taurine, zebu, and composite breeds to characterize any systematic differences between these groups. We identified 91 intra-breed-class markers; 78 were polymorphic only within the zebu animals, while 13 were polymorphic only in the taurine animals. There were no fixed differences (fixed for alternate alleles between the two breed types) between zebu and taurine animals. We found 14 regions with significantly different allele frequencies between zebu and taurine animals indicative of variable selection pressure or genetic drift. We also found 12 independent regions of differential extended haplotype homozygosity (EHH), indicative of recent selection or rapid fixation of the alternate allele within a short period of time in one of the two breed classes. A preliminary functional genomics analysis of these regions pointed towards signatures of tropical attributes including keratins, heat-shock proteins and heat resistance genes. We anticipate this investigation to be a stepping-stone for future studies to identify genomic regions specific to the two cattle groups, and to subsequently assist in the discrimination between temperate and tropically adapted cattle.  相似文献   

20.
The International Society for Animal Genetics (ISAG) proposed a panel of single nucleotide polymorphisms (SNPs) for parentage testing in cattle (a core panel of 100 SNPs and an additional list of 100 SNPs). However, markers specific to East Asian taurine cattle breeds were not included, and no information is available as to whether the ISAG panel performs adequately for these breeds. We tested ISAG's core (100 SNP) and full (200 SNP) panels on two East Asian taurine breeds: the Korean Hanwoo and the Japanese Wagyu, the latter from the Australian herd. Even though the power of exclusion was high at 0.99 for both ISAG panels, the core panel performed poorly with 3.01% false‐positive assignments in the Hanwoo population and 3.57% in the Wagyu. The full ISAG panel identified all sire–offspring relations correctly in both populations with 0.02% of relations wrongly excluded in the Hanwoo population. Based on these results, we created and tested two population‐specific marker panels: one for the Wagyu population, which showed no false‐positive assignments with either 100 or 200 SNPs, and a second panel for the Hanwoo, which still had some false‐positive assignments with 100 SNPs but no false positives using 200 SNPs. In conclusion, for parentage assignment in East Asian cattle breeds, only the full ISAG panel is adequate for parentage testing. If fewer markers should be used, it is advisable to use population‐specific markers rather than the ISAG panel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号