首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ever since the identification of the genetic cause of fragile X syndrome as the expansion of an unstable trinucleotide sequence, several diagnostic strategies have evolved from molecular studies. However, we still lack a simple test suitable for population screening. We have therefore developed a nonisotopic polymerase chain reaction (PCR)-based technique for the identification of fragile X full mutations among men, with easy visualization of the PCR products on silver-stained polyacrylamide gels. The technique consists of PCR amplification with primers that flank the trinucleotide repeats, with a product of 557 bp for the (CGG)29 allele. Conditions were established such that full mutations failed to amplify and were thus identified with 98% sensitivity compared with Southern blot analysis. To produce an indispensable internal control we added to the reaction a third primer, internal to this fragment, allowing the multiplex amplification of a monomorphic band corresponding to a CG-rich stretch 147 bp upstream of the polymorphic region. In trials involving 41 patients and 74 controls, the PCR-based test here described showed specificity of more than 98.6%, accuracy of 99% and a sensitivity of 98%. Thus, although not suitable for medical diagnosis, it constitutes a useful tool for screening for the fragile X syndrome in populations of mentally retarded males. Received: 31 May 1995 / Revised: 4 October 1995  相似文献   

2.
Fragile X syndrome (FXS) is a well-recognized mental retardation syndrome with characteristic facial features and behavioural phenotype. Monosomy 21 is a rare cytogenetic aberration for which clinical features were incompletely defined since full monosomy 21 is incompatible with life. A 5-year-old male patient with FXS and low-grade mosaicism for full monosomy 21 (46,XY[96%]/45,XY,-21[4%]) is presented. He had lack of speech and severely impaired social skills, hyperactivity, stereotypical hand movements, a special interest towards moving colourful items and a short attention span for other objects around. He had macrocephaly, a rather long face, prominent occiput and prominent midface, retrognathia, down-slanting palpebral fissures, hypertelorism and cup-shaped, posteriorly rotated and low-set ears. Full monosomy in the aberrant cell line was proven by whole chromosome painting. FXS was previously reported to accompany sex chromosome aneuploidies; however, to the best of our knowledge, the present patient is the first FXS patient with an aberration involving autosomes. He contributes to the current knowledge on monosomy 21 phenotype, having dysmorphic facial findings despite the concurrent phenotypic expression of the FXS. As a last conclusion, cytogenetic analysis must be done to all mentally retarded patients with minor dysmorphic features.  相似文献   

3.
Frequency of the fragile X syndrome in Japanese mentally retarded males   总被引:4,自引:1,他引:3  
Summary Among 243 institutionalized mentally retarded males in Japan, 13 patients (5.3%) with the fre(X)(q27) from nine families were detected. These 13 patients accounted for 8.6% of 152 male inmates with unknown causes of mental retardation in the population. One out of nine pedigrees had an apparently unaffected male transmitter of this disorder. Our data agree with the frequencies of the fra(X) syndrome in various retarded populations, most of which were Caucasians, suggesting that the prevalence of the fra(X) syndrome in Japanese is not significantly different from those in Causasians.  相似文献   

4.
The fragile X syndrome is an X-linked mental retardation disorder caused by an expanded CGG repeat in the first exon of the fragile X mental retardation (FMR1) gene. Its frequency, X-linked inheritance, and consequences for relatives all prompt for diagnosis of this disorder on a large scale in all affected individuals. A screening for the fragile X syndrome has been conducted in a representative sample of 3,352 individuals in schools and institutes for the mentally retarded in the southwestern Netherlands, by use of a brief physical examination and the DNA test. The attitudes and reactions of (non)consenting parents/guardians were studied by (pre- and posttest) questionnaires. A total of 2,189 individuals (65%) were eligible for testing, since they had no valid diagnosis, cerebral palsy, or a previous test for the FMR1 gene mutation. Seventy percent (1,531/2,189) of the parents/guardians consented to testing. Besides 32 previously diagnosed fragile X patients, 11 new patients (9 males and 2 females) were diagnosed. Scoring of physical features was effective in preselection, especially for males (sensitivity .91 and specificity .92). Major motives to participate in the screening were the wish to obtain a diagnosis (82%), the hereditary implications (80%), and the support of research into mental retardation (81%). Thirty-four percent of the parents/guardians will seek additional diagnostic workup after exclusion of the fragile X syndrome. The prevalence of the fragile X syndrome was estimated at 1/ 6,045 for males (95% confidence interval 1/9,981-1/ 3,851). On the basis of the actual number of diagnosed cases in the Netherlands, it is estimated that >50% of the fragile X cases are undiagnosed at present.  相似文献   

5.
Summary The fragile X [fra(X)] syndrome was screened on 190 Japanese institutionalized females with moderate to severe mental retardation. Two inmates with severe mental retardation (IQ 20) had the fra(X) chromosome in 26% and 15% of the cells examined, indicating that the prevalence of the fra(X) syndrome was about 1% in all female inmates and was about 3.27% in severely mentally retarded females with known causes. However, no female with fra(X) syndrome was found in 35 moderately retarded females. Both had brothers with the fra(X) syndrome and the prevalence was 10% in females with a family history of mental retardation. In addition, the replication study of the fra(X) chromosome in the patients supported the proposal that an excess of the early replicated fra(X) chromosome is related to the mental capacity in heterozygous females. Therefore, the fra(X) syndrome should not be ignored even in severely mentally retarded females with a family history, though the heterozygotes are commonly normal to subnormal in their mental development. in addition, the replication study of the fra(X) chromosome may help to estimate mental development in the carrier children.  相似文献   

6.
Understanding fragile X syndrome: insights from retarded flies   总被引:2,自引:0,他引:2  
Gao FB 《Neuron》2002,34(6):859-862
Fragile X syndrome, the most common form of inherited mental retardation, is caused by loss-of-function mutations in the fragile X mental retardation 1 (fmr1) gene. FMR1 is an RNA binding protein that is highly expressed in neurons of the central nervous system. Recent studies in Drosophila indicate that FMR1 plays an important role in synaptogenesis and axonal arborization, which may underlie the observed deficits in flight ability and circadian behavior of fmr1 mutant flies. The relevance of these studies to our understanding of fragile X syndrome is discussed.  相似文献   

7.
112 mentally weak persons aged from 2 to 18 with different degree of oligophrenia have been examined. Cultivation of blood lymphocytes was performed on medium 199 containing 5% of cattle serum. 9 persons with "fragile" X-chromosome are revealed. High frequency of autosomes fragility among the examined contingent of patients is found. A supposition is advanced on interrelation between homozygosity of "fragile" parts of autosomes and oligophrenia.  相似文献   

8.
Summary A de novo interstitial deletion (X)(q27.1q27.3), between the loci DXS 105 and F8, has been found in a mentally retarded female. The deleted X chromosome is preferentially early replicating in fibroblasts, B cells and T cells, suggesting that the missing region plays a role in inactivation of the X chromosome. None of the available DNA probes except DXS 98 maps to the deleted region of about 10000kb. The locus FRAXA is either included in the deletion, or located close to the distal break point.  相似文献   

9.
The folate-sensitive fragile site FRAXE is located in proximal Xq28 of the human X chromosome and lies approximately 600 kb distal to the fragile X syndrome (FRAXA) fragile site at Xq27.3. The cytogenetic expression of FRAXE is thought to be associated with mental handicap, but this is usually mild compared to that of the more common fragile X syndrome that is associated with the expression of the FRAXA fragile site. The exact incidence of FRAXE mental retardation is uncertain. We describe here the results of a U.K. survey designed to assess the frequency of FRAXE in a population of individuals referred for fragile X syndrome testing and found to be negative for expansion events at the FRAXA locus. No FRAXE expansion events were found in 362 cytogenetically negative males studied, and one expansion event was identified in a sample of 534 males for whom cytogenetic analyses were either unrecorded or not performed. Further FRAXE expansion events were detected in two related females known to be cytogenetically positive for a fragile site in Xq27.3-28. To gain insight into the FRAXE phenotype, the clinical details of the identified FRAXE male plus three other FRAXE individuals identified through previous referrals for fragile X syndrome testing are presented. For the population studied, we conclude that FRAXE mental retardation is a relatively rare but significant form of mental retardation for which genetic diagnosis would be appropriate.  相似文献   

10.
11.
12.
13.
14.

Background

Fragile X syndrome (FXS), an X-linked disorder, is the most common cause of inherited mental retardation. This is caused by a trinucleotide CGG repeat expansion (>200) on the fragile X mental retardation 1 gene (FMR1) becoming methylated leading to a deficiency or absence of the FMR1 protein. Determining FXS prevalence in the mentally retarded individuals in the west of Iran was the aim of this study.

Methods

200 patients with moderate mental retardation who were clinically suspicious to FXS were screened using cytogenetic and molecular methods. Blood samples were collected and cultured in the specific culture media. The G-Banding method was used for karyotyping and DNA sequencing performed for verifying the results of the cytogenetic tests.

Results

16 patients (8%) were found to have fragile X syndrome. The results showed that there is no significant association between the fragile X syndrome and economic status and place of residence, however, the relationship between fragile X syndrome and mental retardation in the family history is significant.

Conclusion

The frequency of FXS was similar to other reports in the preselected patients. For diagnosis of FXS, chromosome analysis must be accompanied by molecular studies.
  相似文献   

15.
Noninvasive test for fragile X syndrome, using hair root analysis.   总被引:3,自引:0,他引:3       下载免费PDF全文
Identification of the FMR1 gene and the repeat-amplification mechanism causing fragile X syndrome led to development of reliable DNA-based diagnostic methods, including Southern blot hybridization and PCR. Both methods are performed on DNA isolated from peripheral blood cells and measure the repeat size in FMR1. Using an immunocytochemical technique on blood smears, we recently developed a novel test for identification of patients with fragile X syndrome. This method, also called "antibody test," uses monoclonal antibodies against the FMR1 gene product (FMRP) and is based on absence of FMRP in patients' cells. Here we describe a new diagnostic test to identify male patients with fragile X syndrome, on the basis of lack of FMRP in their hair roots. Expression of FMRP in hair roots was studied by use of an FMRP-specific antibody test, and the percentage of FMRP-expressing hair roots in controls and in male fragile X patients was determined. Control individuals showed clear expression of FMRP in nearly every hair root, whereas male fragile X patients lacked expression of FMRP in almost all their hair roots. Mentally retarded female patients with a full mutation showed FMRP expression in only some of their hair roots (<55%), and no overlap with normal female controls was observed. The advantages of this test are (1) plucking of hair follicles does no appreciable harm to the mentally retarded patient, (2) hairs can be sent in a simple envelope to a diagnostic center, and (3) the result of the test is available within 5 h of plucking. In addition, this test enabled us to identify two fragile X patients who did not show the full mutation by analysis of DNA isolated from blood cells.  相似文献   

16.
Altered folate metabolism has been suggested as a possible reason for expression of the fragile X chromosome in low-folate medium. However, there were no significant differences in the total folate content or in the distribution of folate cofactors between fibroblasts from patients with the fragile X chromosome and those of controls both before and after a period of folate starvation. Fragile X and control fibroblasts lose folate at an equivalent rate. Insofar as folate content and distribution reflect a primary abnormality of folate metabolism, there appears to be no such abnormality in the fragile X syndrome.  相似文献   

17.
Summary Linkage data, using the polymorphic markers 52A (DXS51), F9, 4D-8(DXS98), and St14(DXS52), are presented from 14 fragile X pedigrees and from 7 normal pedigrees derived from the collection of the Centre d'Étude du Polymorphisme Humaine. A multipoint linkage analysis indicates that the most probable order of these four loci in normal families is DXS51-F9-DXS98-DXS52. Recombination frequencies ( ) corresponding to maximum LOD scores ( ) were obtained by two-point linkage analysis for a nuber of linkage groups, including: DXS51-F9 ( =5.94, =0.03), F9-DXS98 ( =0.51, =0.26), F9-DXS52 ( =0.84, =0.27), and DXS98-DXS52 ( =0.32, =0.20). A multipoint linkage analysis of these loci, including the fragile X locus, was also performed for the fragile X population and the data support the relative order (DSX51, F9, DXS98)-FRAXA-DXS52. Recombination frequencies and maximum LOD scores, which again were derived from two-point linkage analyses, were obtained for the linkage groups DXS51-F9 ( =9.96, =0) and F9-DXS52 ( =0.07, =0.45), as well as for the groups DXS51-FRAXA ( =2.42, =0.15), F9-FRAXA ( =1.30, =0.18), DXS98-FRAXA ( =0.05 =0.36), and DXS52-FRAXA ( =2.42 =0.15). The linkage data was further tested for the presence of genetic heterogeneity both within and between the fragile X and normal families for the intervals DXS51-F9, F9-DXS52, F9-FRAXA, and DXS52-FRAXA using a modification of the A test. Except for the interval F9-FRAXA (P<0.10) there was no evidence of genetic heterogeneity for each of the various linkage groups examined. The heterogeneity detected for the interval F9-FRAXA, however, was most likely due to one family (Fx-28) that displayed very tight linkage between these two loci.  相似文献   

18.
Summary We present clinical, cytogenetic, and linkage data of four DNA probes from the terminal long arm of the X chromosome in ten new families with fragile X syndrome. A prior/posterior method of multipoint linkage analysis is employed to combine these results with published data to refine the linkage map of terminal Xq. Ten possible probe/disease orderings were tested. The order with the greatest posterior probability (0.78) of the five loci is 52a-F9-fragile X gene-DX13-St14, although the order with reversal of the positions of 52a and F9 has a posterior probability 0.15. The mean estimates of the distances between the probes and the fragile X gene are 38cM and 33cM for the proximal probes 52a and F9, and 8 cM and 12 cM for the distal probes DX13 and St14. Although the current method of choice in the prenatal diagnosis and carrier detection of the fragile X syndrome remains detailed cytogenetic analysis, consideration is given to the potential role of these DNA probes, both singly and in pairs.  相似文献   

19.
We report herein two cases where detection of X chromosome aneuploidy (cytogenetically proved 45,X/46XX and 47,XXX) was made possible by molecular diagnosis during population-based carrier screening for Fragile X syndrome, using Southern blot analysis. This study emphasizes the value of molecular analysis for gene dosage to suggest chromosomal aneuploidy.  相似文献   

20.
Molecular genetic analysis of individuals from 6 Egyptian and 33 German families with fragile X syndrome and 240 further patients with mental retardation was performed applying a completely non-radioactive system. The aim of our study was the development of a non-radioactive detection method and its implementation in molecular diagnosis of the fragile X syndrome. Furthermore, we wanted to assess differences in the mutation sizes between Egyptian and German patients and between Egyptian and German carriers of a premutation. Using non-radioactive polymerase chain reaction (PCR), agarose gel electrophoresis and blotting of the PCR products, followed by hybridisation with a digoxigenin-labelled oligonucleotide probe (CGG)5 and chemiluminescent detection, we identified the fragile X full mutation (amplification of a CGG repeat in the FMR-1 gene ranging from several hundred to several thousand repeat units) in all patients. We observed no differences in the length of the CGG repeat between the Egyptian and German patients and carriers, respectively. However, in one prenatal diagnosis, we detected only one normal sized allele in a female fetus using the PCR-agarose assay, whereas Southern blot analysis with the digoxigenin labelled probe StB 12.3 revealed presence of a full mutation. Our newly established nonradioactive genomic blotting method is based on the conventional radioactive Southern blot analysis. Labelling of the probe StB 12.3 with digoxigenin via PCR allowed the detection of normal, premutated and fully mutated alleles. For exact sizing of small premutated or large normal alleles, we separated digoxigenin labelled PCR products through denaturing poly-acrylamide gelelectrophoresis (PAGE) and transfered them to a nylon membrane using a gel dryer. The blotted PCR-fragments can easily be detected with alkaline phosphate-labelled anti-digoxigenin antibody. The number of trinucleotide repeat units can be determined by scoring the detected bands against a digoxigenated M13 sequencing ladder. Our newly developed digoxigenin/chemiluminescence approach using PCR and Southern blot analysis provides reliable results for routine detection of full fragile X mutations and premutations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号