首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Crop performance, nitrogen and water use in flooded and aerobic rice   总被引:11,自引:0,他引:11  
Irrigated aerobic rice is a new system being developed for lowland areas with water shortage and for favorable upland areas with access to supplementary irrigation. It entails the cultivation of nutrient-responsive cultivars in nonsaturated soil with sufficient external inputs to reach yields of 70–80% of high-input flooded rice. To obtain insights into crop performance, water use, and N use of aerobic rice, a field experiment was conducted in the dry seasons of 2002 and 2003 in the Philippines. Cultivar Apo was grown under flooded and aerobic conditions at 0 and at 150 kg fertilizer N ha–1. The aerobic fields were flush irrigated when the soil water potential at 15-cm depth reached –30 kPa. A 15N isotope study was carried out in microplots within the 150-N plots to determine the fate of applied N. The yield under aerobic conditions with 150 kg N ha–1 was 6.3 t ha–1 in 2002 and 4.2 t ha–1 in 2003, and the irrigation water input was 778 mm in 2002 and 826 mm in 2003. Compared with flooded conditions, the yield was 15 and 39% lower, and the irrigation water use 36 and 41% lower in aerobic plots in 2002 and 2003, respectively. N content at 150 kg N ha–1 in leaves and total plant was nearly the same for aerobic and flooded conditions, indicating that crop growth under aerobic conditions was limited by water deficit and not by N deficit. Under aerobic conditions, average fertilizer N recovery was 22% in both the main field and the microplot, whereas under flooded conditions, it was 49% in the main field and 36% in the microplot. Under both flooded and aerobic conditions, the fraction of 15N that was determined in the soil after the growing season was 23%. Since nitrate contents in leachate water were negligible, we hypothesized that the N unaccounted for were gaseous losses. The N unaccounted for was higher under aerobic conditions than under flooded conditions. For aerobic rice, trials are suggested for optimizing dose and timing of N fertilizer. Also further improvements in water regime should be made to reduce crop water stress.  相似文献   

2.

Background

We investigated whether a relationship between small airways dysfunction and bronchial hyperresponsiveness (BHR), expressed both in terms of ease of airway narrowing and of excessive bronchoconstriction, could be demonstrated in asthma.

Methods

63 (36 F; mean age 42 yr ± 14) stable, mild-to-moderate asthmatic patients (FEV1 92% pred ±14; FEV1/FVC 75% ± 8) underwent the methacholine challenge test (MCT). The degree of BHR was expressed as PD20 (in μg) and as ∆FVC%. Peripheral airway resistance was measured pre- and post-MCT by impulse oscillometry system (IOS) and expressed as R5-R20 (in kPa sL−1).

Results

All patients showed BHR to methacholine (PD20 < 1600 μg) with a PD20 geometric (95% CI) mean value of 181(132–249) μg and a ∆FVC% mean value of 13.6% ± 5.1, ranging 2.5 to 29.5%. 30 out of 63 patients had R5-R20 > 0.03 kPa sL−1 (>upper normal limit) and showed ∆FVC%, but not PD20 values significantly different from the 33 patients who had R5-R20 ≤ 0.03 kPa sL−1 (15.8% ± 4.6 vs 11.5% ± 4.8, p < 0.01 and 156(96–254) μg vs 207 (134–322) μg, p = 0.382). In addition, ∆FVC% values were significantly related to the corresponding pre- (r = 0.451, p < 0.001) and post-MCT (r = 0.376, p < 0.01) R5-R20 values.

Conclusions

Our results show that in asthmatic patients, small airway dysfunction, as assessed by IOS, is strictly associated to BHR, expressed as excessive bronchoconstriction, but not as ease of airway narrowing.  相似文献   

3.
The effects of the cationic surfactant (cationic cetyl trimethyl ammonium bromide, CTAB) on the improvement of the sludge dewaterability using the cationic flocculant (cationic polyacrylamide, CPAM) were analyzed. Residual turbidity of supernatant, dry solid (DS) content, extracellular polymeric substances (EPS), specific resistance to filtration (SRF), zeta potential, floc size, and settling rate were investigated, respectively. The result showed that the CTAB positively affected the sludge conditioning and dewatering. Compared to not using surfactant, the DS and the settling rate increased by 8%–21.2% and 9.2%–15.1%, respectively, at 40 mg·L−1 CPAM, 10×10−3 mg·L−1 CTAB, and pH 3. The residual turbidities of the supernatant and SRF were reduced by 14.6%–31.1% and 6.9%–7.8% compared with turbidities and SRF without surfactant. Furthermore, the release of sludge EPS, the increases in size of the sludge flocs, and the sludge settling rate were found to be the main reasons for the CTAB improvement of sludge dewatering performance.  相似文献   

4.
The role of nitrification-denitrification in the loss of nitrogen from urea applied to puddled soils planted to rice and subjected to continuous and intermittent flooding was evaluated in three greenhouse pot studies. The loss of N via denitrification was estimated indirectly using the15N balance, after either first accounting for NH3 volatilization or by analyzing the15N balance immediately before and after the soil was dried and reflooded. When urea was broadcast and incorporated the loss of15N from the soil-plant systems depended on the soil, being about 20%–25% for the silt loams and only 10%–12% for the clay. Ammonia volatilization accounted for an average 20% of the N applied in the silt loam. Denitrification losses could not account for more than 10% of the applied N in any of the continuously flooded soil-plant systems under study and were most likely less than 5%. Intermittent flooding of soil planted to rice did not increase the loss of N. Denitrification appeared to be an important loss mechanism in continuously flooded fallow soils, accounting for the loss of approximately 40% of the applied15N. Loss of15N was not appreciably enhanced in fallow soils undergoing intermittent flooding. Apparently, nitrate formed in oxidized zones in the soil was readily denitrified in the absence of plant roots. Extensive loss (66%) of15N-labeled nitrate was obtained when 100 mg/pot of nitrate-N was applied to the surface of nonflooded soil prior to reflooding. This result suggests that rice plants may not compete effectively with denitrifiers if large quantities of nitrate were to accumulate during intermittent dry periods.  相似文献   

5.
6.
Takahashi  Shigeru  Ueno  Hideto  Yamamuro  Shigekazu 《Plant and Soil》2004,259(1-2):307-314
Knowledge of N availability from organic amendments is a key to improve N use efficiency and reduce environmental pressure from agriculture. Nitrogen mineralization from 15N-labeled cattle dung compost and rapeseed cake was investigated under flooded and upland (60% of water holding capacity) conditions in an incubation experiment for 63 d at 25 °C. The relative abundance of N in the cattle dung compost by the simple step-wise acid hydrolysis method was in the following order: labile N (37% of total N, refluxing with 1 M HCl for 3 h, H1-N) > non-hydrolyzable N (32%) > recalcitrant N (18%, 3 M HCl for 3 h, H2-N). There was no significant difference in the 15N abundance between total N and N in each fraction of the cattle dung compost. For the rapeseed cake, the H1-N accounted for 81% of total N and the 15N abundance of total N and H1-N was higher than the 15N abundance of H2-N and non-hydrolyzable N. In the cattle dung treatment, inorganic 15N was the highest at 21 d of incubation and then decreased thereafter under flooded conditions, whereas it remained constant from 21 to 63 d under upland conditions. In the rapeseed cake treatment, inorganic 15N was the highest at 42 d under flooded conditions and inorganic 15N increased until 42 d and remained stable thereafter under upland conditions. The N mineralization rate from the cattle dung compost was slow both under flooded and upland conditions. More than half of N in the rapeseed cake was mineralized during the incubation period both under flooded and upland conditions. There was no significant difference in 15N recovery in the soil between flooded and upland conditions at 63 d in the cattle dung treatment, while the 15N recovery in the soil at 63 d was higher under upland than under flooded conditions in the rapeseed cake treatment. Although N mineralization from the rapeseed cake was greater under flooded conditions than upland conditions, there was no significant difference in N mineralization from the cattle dung compost between both conditions. Therefore, N mineralization from organic amendments is not always more rapid under flooded than upland conditions depending on the amendment type.  相似文献   

7.

Purpose

To describe enhanced vitreous imaging for visualization of anatomic features and microstructures within the posterior vitreous and vitreoretinal interface in healthy eyes using swept-source optical coherence tomography (SS-OCT). The study hypothesis was that long-wavelength, high-speed, volumetric SS-OCT with software registration motion correction and vitreous window display or high-dynamic-range (HDR) display improves detection sensitivity of posterior vitreous and vitreoretinal features compared to standard OCT logarithmic scale display.

Design

Observational prospective cross-sectional study.

Methods

Multiple wide-field three-dimensional SS-OCT scans (500×500A-scans over 12×12 mm2) were obtained using a prototype instrument in 22 eyes of 22 healthy volunteers. A registration motion-correction algorithm was applied to compensate motion and generate a single volumetric dataset. Each volumetric dataset was displayed in three forms: (1) standard logarithmic scale display, enhanced vitreous imaging using (2) vitreous window display and (3) HDR display. Each dataset was reviewed independently by three readers to identify features of the posterior vitreous and vitreoretinal interface. Detection sensitivities for these features were measured for each display method.

Results

Features observed included the bursa premacularis (BPM), area of Martegiani, Cloquet''s/BPM septum, Bergmeister papilla, posterior cortical vitreous (hyaloid) detachment, papillomacular hyaloid detachment, hyaloid attachment to retinal vessel(s), and granular opacities within vitreous cortex, Cloquet''s canal, and BPM. The detection sensitivity for these features was 75.0% (95%CI: 67.8%–81.1%) using standard logarithmic scale display, 80.6% (95%CI: 73.8%–86.0%) using HDR display, and 91.9% (95%CI: 86.6%–95.2%) using vitreous window display.

Conclusions

SS-OCT provides non-invasive, volumetric and measurable in vivo visualization of the anatomic microstructural features of the posterior vitreous and vitreoretinal interface. The vitreous window display provides the highest sensitivity for posterior vitreous and vitreoretinal interface analysis when compared to HDR and standard OCT logarithmic scale display. Enhanced vitreous imaging with SS-OCT may help assess the natural history and treatment response in vitreoretinal interface diseases.  相似文献   

8.
Summary As part of a research program to determine the fate of N fertilizers applied to dryland sorghum in the semi-arid tropics,15N balance studies were conducted with various N sources in the greenhouse. Two American soils, Houston Black clay (Udic Pellustert) and Windthorst sandy loam (Udic Paleustalf), similar in properties to the Vertisol and Alfisol in the semi-arid tropics of India, were employed. Experiments were conducted with large pots containing 20 or 60 kg of soil which was subjected to several watering regimes. The15N not accounted for in the plant and soil was presumably lost. Losses of N on calcareous Houston Black clay were greatest for broadcast urea, 16%–28%. Amendment of broadcast urea with 2% phenyl phosphorodiamidate, a urease inhibitor, reduced N losses only slightly to 15%–20%. Point placement of urea at a 6 cm soil depth reduced losses to 1%–11%. Granule size had no effect on N loss from point-placed urea. Ammonia volatilization was apparently the main N loss mechanism, since N losses from sodium nitrate were less than 7%, except when the soil surface was waterlogged. N losses on the Windthorst soil averaged 30% from urea and 11% from ammonium nitrate. Amendment of urea with urea phosphate to form a 27% N and 13% P product reduced fertilizer N losses but did not increase grain yield on Windthorst soil. N losses were also less from ammonium nitrophosphate than from urea. Band and point placement of urea 6 cm below the soil surface were equally effective in reducing N loss on Houston Black clay. The findings give credence to the recommendation of deep band placement for urea in the semi-arid tropics.  相似文献   

9.
Predicted changes in climate may affect key soil processes such as respiration and net nitrogen (N) mineralization and thus key ecosystem functions such as carbon (C) storage and nutrient availability. To identify the sensitivity of shrubland soils to predicted climate changes, we have carried out experimental manipulations involving ecosystem warming and prolonged summer drought in ericaceous shrublands across a European climate gradient. We used retractable covers to create artificial nighttime warming and prolonged summer drought to 20-m2 experimental plots. Combining the data from across the environmental gradient with the results from the manipulation experiments provides evidence for strong climate controls on soil respiration, net N mineralization and nitrification, and litter decomposition. Trends of 0%–19% increases of soil respiration in response to warming and decreases of 3%–29% in response to drought were observed. Across the environmental gradient and below soil temperatures of 20°C at a depth of 5–10 cm, a mean Q10 of 4.1 in respiration rates was observed although this varied from 2.4 to 7.0 between sites. Highest Q10 values were observed in Spain and the UK and were therefore not correlated with soil temperature. A trend of increased accumulated surface litter mass loss was observed with experimental warming (2%– 22%) but there was no consistent response to experimental drought. In contrast to soil respiration and decomposition, variability in net N mineralization was best explained by soil moisture rather than temperature. When water was neither limiting or in excess, a Q10 of 1.5 was observed for net N mineralization rates. These data suggest that key soil processes will be differentially affected by predicted changes in rainfall pattern and temperature and the net effect on ecosystem functioning will be difficult to predict without a greater understanding of the controls underlying the sensitivity of soils to climate variables.  相似文献   

10.

Objectives

Our objective is to test the hypothesis that coronary endothelial function (CorEndoFx) does not change with repeated isometric handgrip (IHG) stress in CAD patients or healthy subjects.

Background

Coronary responses to endothelial-dependent stressors are important measures of vascular risk that can change in response to environmental stimuli or pharmacologic interventions. The evaluation of the effect of an acute intervention on endothelial response is only valid if the measurement does not change significantly in the short term under normal conditions. Using 3.0 Tesla (T) MRI, we non-invasively compared two coronary artery endothelial function measurements separated by a ten minute interval in healthy subjects and patients with coronary artery disease (CAD).

Methods

Twenty healthy adult subjects and 12 CAD patients were studied on a commercial 3.0 T whole-body MR imaging system. Coronary cross-sectional area (CSA), peak diastolic coronary flow velocity (PDFV) and blood-flow were quantified before and during continuous IHG stress, an endothelial-dependent stressor. The IHG exercise with imaging was repeated after a 10 minute recovery period.

Results

In healthy adults, coronary artery CSA changes and blood-flow increases did not differ between the first and second stresses (mean % change ±SEM, first vs. second stress CSA: 14.8%±3.3% vs. 17.8%±3.6%, p = 0.24; PDFV: 27.5%±4.9% vs. 24.2%±4.5%, p = 0.54; blood-flow: 44.3%±8.3 vs. 44.8%±8.1, p = 0.84). The coronary vasoreactive responses in the CAD patients also did not differ between the first and second stresses (mean % change ±SEM, first stress vs. second stress: CSA: −6.4%±2.0% vs. −5.0%±2.4%, p = 0.22; PDFV: −4.0%±4.6% vs. −4.2%±5.3%, p = 0.83; blood-flow: −9.7%±5.1% vs. −8.7%±6.3%, p = 0.38).

Conclusion

MRI measures of CorEndoFx are unchanged during repeated isometric handgrip exercise tests in CAD patients and healthy adults. These findings demonstrate the repeatability of noninvasive 3T MRI assessment of CorEndoFx and support its use in future studies designed to determine the effects of acute interventions on coronary vasoreactivity.  相似文献   

11.
The barnacle is well known for its tenacious and permanent attachment to a wide variety of underwater substrates, which is accomplished by synthesizing, secreting and curing a mixture of adhesive proteins termed “barnacle cement”. In order to evaluate interfacial adhesion abilities of barnacle cement proteins, the cp19k homologous gene in Balanus albicostatus (Balcp19k) was cloned and expressed in Escherichia coli. Here, we report an intriguing discovery of a gel-like super adhesive aggregation produced by Trx-Balcp19k, a recombinant Balcp19k fusion protein. The Trx-Balcp19k consists of an 18 kDa fragment at the N-terminus, which is encoded by pET-32a(+) plasmid and mainly comprised of a thioredoxin (Trx) tag, and Balcp19k at the C-terminus. The sticky aggregation was designated as “Trx-Balcp19k gel”, and the bulk adhesion strength, biochemical composition, as well as formation conditions were all carefully investigated. The Trx-Balcp19k gel exhibited strong adhesion strength of 2.10 ± 0.67 MPa, which was approximately fifty folds higher than that of the disaggregated Trx-Balcp19k (40 ± 8 kPa) and rivaled those of commercial polyvinyl acetate (PVA) craft glue (Mont Marte, Australia) and UHU glue (UHU GmbH & Co. KG, Germany). Lipids were absent from the Trx-Balcp19k gel and only a trace amount of carbohydrates was detected. We postulate that the electrostatic interactions play a key role in the formation of Trx-Balcp19k gel, by mediating self-aggregation of Trx-Balcp19k based on its asymmetric distribution pattern of charged amino acids. Taken together, we believe that our discovery not only presents a promising biological adhesive with potential applications in both biomedical and technical fields, but also provides valuable paradigms for molecular design of bio-inspired peptide- or protein-based materials.  相似文献   

12.
Real-time shear-wave elastography (SWE) is a newly developed method which can obtain the stiffness of tissues and organs based on tracking of shear wave propagation through a structure. Several studies have demonstrated its potential in the differentiation between diseased and normal tissue in clinical practices, however the applicability to testicular disease has not been well elucidated. We investigated the feasibility and reproducibility of SWE in the detection of testicular torsion. This prospective study comprised 15 patients with complete testicular torsion. Results obtained from SWE along with conventional gray-scale and color Doppler sonography and post-operative pathology were compared. The results revealed that (i) the size of injured testis was increased and the twisted testis parenchyma was heterogeneous. The blood flow signals in injured testis were barely visible or absent; (ii) The Young’s modulus, including Emean, Emax, Emin and SD values in the border area of torsional testis were higher than those of normal testis (Emean, 78.07±9.01kPa vs 22.0±5.10kPa; Emax,94.07±6.53kPa vs 27.87±5.78kPa; Emin, 60.73±7.84 kPa vs 18.90±4.39kPa; SD, 7.67±0.60 kPa vs 2.30±0.36 kPa, [P<0.05]); The Emax and SD values in the central area of the torsional testis were higher than the corresponding area of the normal testis (Emax, 8.23±0.30 kPa vs 3.97±0.95kPa; SD, 1.5±0.26kPa vs 0.67±0.35kPa,[P<0.05]) and Emin values was lower than those of normal testicles(0.93±0.51kPa vs 1.6±0.36kPa; [P<0.05]); (iii) The Young''s modulus measurement between two physicians showed good agreement. The pathological findings were accordance with SWE measurement. SWE is a non-invasive, convenient and high reproducible method and may serve as an important alternative tool in the diagnosis and monitoring the progression of the acute scrotums, in additional to conventional Doppler sonography.  相似文献   

13.
To relate exposure to adverse health effects, it is necessary to know where particles in the submicron range deposit in the respiratory tract. The possibly higher vulnerability of children requires specific inhalation studies. However, radio-aerosol deposition experiments involving children are rare because of ethical restrictions related to radiation exposure. Thus, an in vivo study was conducted using three baboons as a child respiratory tract model to assess regional deposition patterns (thoracic region vs. extrathoracic region) of radioactive polydisperse aerosols ([d16–d84], equal to [0.15 µm–0.5 µm], [0.25 µm–1 µm], or [1 µm–9 µm]). Results clearly demonstrated that aerosol deposition within the thoracic region and the extrathoraic region varied substantially according to particle size. High deposition in the extrathoracic region was observed for the [1 µm–9 µm] aerosol (72%±17%). The [0.15 µm–0.5 µm] aerosol was associated almost exclusively with thoracic region deposition (84%±4%). Airborne particles in the range of [0.25 µm–1 µm] showed an intermediate deposition pattern, with 49%±8% in the extrathoracic region and 51%±8% in the thoracic region. Finally, comparison of baboon and human inhalation experiments for the [1 µm–9 µm] aerosol showed similar regional deposition, leading to the conclusion that regional deposition is species-independent for this airborne particle sizes.  相似文献   

14.
Summary Soil samples from the surface (0–0.5 cm) and subsurface (0.5–5.0 cm) in a wetland field cultivated with rice and submerged for different periods up to 6 weeks were incubated for 2 weeks in the laboratory under flooded or unflooded condition, with added NH4 +–N. The ammonium and nitrate-N of the incubated-soils indicate that in the surface soil (a) nitrification is retarded when submerged for 4 weeks or more (b) nitrification did not resume to former levels within 2 weeks after air drying for a period of 1 week. In the subsurface soil, submergence for 2 weeks caused a retardation of nitrification but longer submergence did not reduce nitrification any further.During submergence, redox potential at 2 mm remained at relatively high values but began to decline 30 days after submergence. At 5 cm, Eh indicated reduced conditions from the time of submergence.  相似文献   

15.
Understanding how animals cope with habitat‐specific environmental factors can assist in species conservation management. We studied the habitat use of four groups (two large and two small groups) of white‐headed langurs (Trachypithecus leucocephalus) living in the forest of southwest Guangxi, China between September 2016 and February 2017 via instantaneous scan sampling. Our results showed that the langurs primarily used hillsides (55.91% ± 6.47%), followed by cliffs (29.70% ± 5.48%), hilltops (7.26% ± 3.55%), flat zones (6.99% ± 6.58%), and farmlands (0.14% ± 0.28%). The langurs moved most frequently on hillsides (49.35% ± 6.97%) and cliffs (35.60% ± 9.17%). The hillsides were more frequently used (66.94% ± 7.86%) during feeding, and the langurs increased the use of hilltops during the rainy season, and the use of cliffs in the dry season. The langurs frequently rested on hillsides (49.75% ± 8.16%) and cliffs (38.93% ± 8.02%). The larger langur group used cliffs more frequently when moving and resting, whereas the small langur group used hillsides more frequently while resting. Langurs in all groups avoided the flat zones for feeding. Their use of habitat reflected the balancing of foraging needs, thermoregulation, and predator avoidance. We conclude that the ecological factors are determinants of habitat use for white‐headed langurs. Our findings suggest that conservation efforts should focus on protecting the vegetation on the hillsides and restoring the vegetation on the flat zones.  相似文献   

16.

Objectives

Competitive endurance athletes commonly undertake periods of overload training in the weeks prior to major competitions. This investigation examined the effects of two seven-day high-intensity overload training regimes (HIT) on performance and physiological characteristics of competitive cyclists.

Design

The study was a matched groups, controlled trial.

Methods

Twenty-eight male cyclists (mean ± SD, Age: 33±10 years, Mass 74±7 kg, VO2 peak 4.7±0.5 L·min−1) were assigned to a control group or one of two training groups for seven consecutive days of HIT. Before and after training cyclists completed an ergometer based incremental exercise test and a 20-km time-trial. The HIT sessions were ∼120 minutes in duration and consisted of matched volumes of 5, 10 and 20 second (short) or 15, 30 and 45 second (long) maximal intensity efforts.

Results

Both the short and long HIT regimes led to significant (p<0.05) gains in time trial performance compared to the control group. Relative to the control group, the mean changes (±90% confidence limits) in time-trial power were 8.2%±3.8% and 10.4%±4.3% for the short and long HIT regimes respectively; corresponding increases in peak power in the incremental test were 5.5%±2.7% and 9.5%±2.5%. Both HIT (short vs long) interventions led to non-significant (p>0.05) increases (mean ± SD) in VO2 peak (2.3%±4.7% vs 3.5%±6.2%), lactate threshold power (3.6%±3.5% vs 2.9%±5.3%) and gross efficiency (3.2%±2.4% vs 5.1%±3.9%) with only small differences between HIT regimes.

Conclusions

Seven days of overload HIT induces substantial enhancements in time-trial performance despite non-significant increases in physiological measures with competitive cyclists.  相似文献   

17.

Purpose

The purpose of the study was to assess the responses of pial artery pulsation (cc-TQ) and subarachnoid width (sas-TQ) to acetazolamide challenge in patients with chronic carotid artery stenosis and relate these responses to changes in peak systolic velocity (PSV), cerebral blood flow (CBF), cerebral blood volume (CBV), mean transit time (MTT) and time to peak response (TTP).

Methods

Fifteen patients with carotid artery stenosis ≥90% on the ipsilateral side and <50% on the contralateral side were enrolled into the study. PSV was assessed using colour-coded duplex sonography, CBF, CBV, MTT and TTP with perfusion computed tomography, cc-TQ and sas-TQ with near-infrared transillumination/backscattering sounding (NIR-T/BSS).

Results

Based on the ipsilateral/contralateral cc-TQ ratio after acetazolamide challenge two groups of patients were distinguished: the first group with a ratio ≥1 and the second with a ratio <1. In the second group increases in CBF and CBV after the acetazolamide test were significantly higher in both hemispheres (ipsilateral: +33.0%±8.1% vs. +15.3%±4.4% and +26.3%±6.6% vs. +14.3%±5.1%; contralateral: +26.8%±7.0% vs. +17.6%±5.6% and +20.0%±7.3% vs. +10.0%±3.7%, respectively), cc-TQ was significantly higher only on the ipsilateral side (+37.3%±9.3% vs. +26.6%±8.6%) and the decrease in sas-TQ was less pronounced on the ipsilateral side (−0.7%±1.5% vs. −10.2%±1.5%), in comparison with the first group. The changes in sas-TQ following the acetazolamide test were consistent with the changes in TTP.

Conclusions

The ipsilateral/contralateral cc-TQ ratio following acetazolamide challenge may be used to distinguish patient groups characterized by different haemodynamic parameters. Further research on a larger group of patients is warranted.  相似文献   

18.
Rice cultivar difference in seedling establishment in flooded soil   总被引:2,自引:0,他引:2  
Yamauchi  M.  Biswas  J.K. 《Plant and Soil》1997,189(1):145-153
Seedling establishment of direct sown rice plants is less successful in flooded soil than in drained soil. This study was conducted to clarify the difference in morphogenesis of rice seeds sown in flooded and drained soils and to identify the morphological characteristics responsible for successful establishment of cultivars in flooded soil. Rice cultivars ASD1 and IR41996–50–2–1–3, superior in seedling establishment in flooded soil, and Mahsuri and IR72, non-superior (control), were sown at a depth of 25 mm in soil flooded with 25 mm of water or in drained soil. The coleoptile and 1st leaf emerged from the soil surface simultaneously in drained soil while in flooded soil the coleoptile emerged first. The coleoptile of superior cultivars, unlike the controls, elongated more in flooded soil than in drained soil. In flooded soil, the development of mesocotyl, 1st leaf, and roots were inhibited to a greater extent in the controls, than in the superior cultivars. In sealed flasks in which gas containing 0–21% O2 was exchanged daily, the superior cultivars developed longer coleoptiles than the controls at lower O2 concentrations. These findings suggest that the reason superior cultivars grow better in flooded soil than the controls is that the coleoptile elongates faster and longer in hypoxia and is able to reach the soil surface where O2 is available.  相似文献   

19.
It was previously shown that mutations of integrin α4 chain sites, within putative EF-hand-type divalent cation-binding domains, each caused a marked reduction in α4β1-dependent cell adhesion. Some reports have suggested that α-chain “EF-hand” sites may interact directly with ligands. However, we show here that mutations of three different α4 “EF-hand” sites each had no effect on binding of soluble monovalent or bivalent vascular cell adhesion molecule 1 whether measured indirectly or directly. Furthermore, these mutations had minimal effect on α4β1-dependent cell tethering to vascular cell adhesion molecule 1 under shear. However, EF-hand mutants did show severe impairments in cellular resistance to detachment under shear flow. Thus, mutation of integrin α4 “EF-hand-like” sites may impair 1) static cell adhesion and 2) adhesion strengthening under shear flow by a mechanism that does not involve alterations of initial ligand binding.  相似文献   

20.
Erratic rainfall in rainfed lowlands and inadequate water supply in irrigated lowlands can results in alternate soil drying and flooding during a rice (Oryza sativa L.) cropping period. Effects of alternate soil drying and flooding on N loss by nitrification-denitrification have been inconsistent in previous field research. To determine the effects of water deficit and urea timing on soil NO3 and NH4, floodwater NO3, and N loss from added 15N-labeled urea, a field experiment was conducted for 2 yr on an Andaqueptic Haplaquoll in the Philippines. Water regimes were continuously flooded, not irrigated from 15 to 35 d after transplanting (DT), or not irrigated from 41 to 63 DT. The nitrogen treatments in factorial combination with water regimes were no applied N and 80 kg urea-N ha–1, either applied half basally and half at 37 DT or half at 11 DT and half at 65 DT. Water deficit at 15 to 35 DT and 41 to 63 DT, compared with continuous soil flooding, significantly reduced extractable NH4 in the top 30-cm soil layer and resulted in significant but small (<1.0 kg N ha–1) soil NO3 accumulations. Soil NO3, which accumulated during the water deficit, rapidly disappeared after reflooding. Water deficit at 15 to 35 DT, unlike that at 41 to 63 DT, increased the gaseous loss of added urea N as determined from unrecovered 15N in 15N balances. The results indicate that application of urea to young rice in saturated or flooded soil results in large, rapid losses of N (mean = 35% of applied N), presumably by NH3 volatilization. Subsequent soil drying and flooding during the vegetative growth phase can result in additional N loss (mean = 14% of applied N), presumably by nitrification-denitrification. This additional N loss due to soil drying and flooding decreases with increasing crop age, apparently because of increased competition by rice with soil microorganisms for NH4 and NO3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号