首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reprogramming of the standard genetic code to include non-canonical amino acids (ncAAs) opens new prospects for medicine, industry, and biotechnology. There are several methods of code engineering, which allow us for storing new genetic information in DNA sequences and producing proteins with new properties. Here, we provided a theoretical background for the optimal genetic code expansion, which may find application in the experimental design of the genetic code. We assumed that the expanded genetic code includes both canonical and non-canonical information stored in 64 classical codons. What is more, the new coding system is robust to point mutations and minimizes the possibility of reversion from the new to old information. In order to find such codes, we applied graph theory to analyze the properties of optimal codon sets. We presented the formal procedure in finding the optimal codes with various number of vacant codons that could be assigned to new amino acids. Finally, we discussed the optimal number of the newly incorporated ncAAs and also the optimal size of codon groups that can be assigned to ncAAs.  相似文献   

2.
The standard genetic code, by which most organisms translate genetic material into protein metabolism, is non-randomly organized. The Error Minimization hypothesis interprets this non-randomness as an adaptation, proposing that natural selection produced a pattern of codon assignments that buffers genomes against the impact of mutations. Indeed, on the average any given point mutation has a lesser effect on the chemical properties of the utilized amino acid than expected by chance. Might it also, however, be the case that the non-random nature of the code effects the rate of adaptive evolution? To investigate this, here we develop population genetic simulations to test the rate of adaptive gene evolution under different genetic codes. We identify two independent properties of a genetic code that profoundly influence the speed of adaptive evolution. Noting that the standard genetic code exhibits both, we offer a new insight into the effects of the "error minimizing" code: such a code enhances the efficacy of adaptive sequence evolution.  相似文献   

3.

Background  

The (almost) universality of the genetic code is one of the most intriguing properties of cellular life. Nevertheless, several variants of the standard genetic code have been observed, which differ in one or several of 64 codon assignments and occur mainly in mitochondrial genomes and in nuclear genomes of some bacterial and eukaryotic parasites. These variants are usually considered to be the result of non-adaptive evolution. It has been shown that the standard genetic code is preferential to randomly assembled codes for its ability to reduce the effects of errors in protein translation.  相似文献   

4.
5.
The codon-degeneracy model (CDM) predicts that patterns of nucleotide substitution in protein-coding genes are largely determined by the relative frequencies of four-fold (4f), two-fold, and non-degenerate sites, the attributes of which are determined by the structure of the governing genetic code. The CDM thus further predicts that genetic codes with alternative structures will "filter" molecular evolution differentially. A method, therefore, is presented by which the CDM may be applied to the unique structure of any genetic code. The mathematical relationship between the proportion of transitions at 4f degenerate nucleotide sites and the transition-to-transversion ratio is described. Predictions for five individual genetic codes, relative to the relationship between code structure and expected patterns of nucleotide substitution, are clearly defined. To test this "filter" hypothesis of genetic codes, simulated DNA sequence data sets were generated with a variety of input parameter values to estimate the relationship between patterns of nucleotide substitution and best-fit estimates of transition bias at 4f degenerate sites for both the universal genetic code and the vertebrate mitochondrial genetic code. These analyses confirm the prediction of the CDM that, all else being equal, even small differences in the structure of alternative genetic codes may result in significant shifts in the overall pattern of nucleotide substitution.  相似文献   

6.

Background

The standard genetic code (SGC) is a unique set of rules which assign amino acids to codons. Similar amino acids tend to have similar codons indicating that the code evolved to minimize the costs of amino acid replacements in proteins, caused by mutations or translational errors. However, if such optimization in fact occurred, many different properties of amino acids must have been taken into account during the code evolution. Therefore, this problem can be reformulated as a multi-objective optimization task, in which the selection constraints are represented by measures based on various amino acid properties.

Results

To study the optimality of the SGC we applied a multi-objective evolutionary algorithm and we used the representatives of eight clusters, which grouped over 500 indices describing various physicochemical properties of amino acids. Thanks to that we avoided an arbitrary choice of amino acid features as optimization criteria. As a consequence, we were able to conduct a more general study on the properties of the SGC than the ones presented so far in other papers on this topic. We considered two models of the genetic code, one preserving the characteristic codon blocks structure of the SGC and the other without this restriction. The results revealed that the SGC could be significantly improved in terms of error minimization, hereby it is not fully optimized. Its structure differs significantly from the structure of the codes optimized to minimize the costs of amino acid replacements. On the other hand, using newly defined quality measures that placed the SGC in the global space of theoretical genetic codes, we showed that the SGC is definitely closer to the codes that minimize the costs of amino acids replacements than those maximizing them.

Conclusions

The standard genetic code represents most likely only partially optimized systems, which emerged under the influence of many different factors. Our findings can be useful to researchers involved in modifying the genetic code of the living organisms and designing artificial ones.
  相似文献   

7.

Background

Transfer RNA (tRNA) is the means by which the cell translates DNA sequence into protein according to the rules of the genetic code. A credible proposition is that tRNA was formed from the duplication of an RNA hairpin half the length of the contemporary tRNA molecule, with the point at which the hairpins were joined marked by the canonical intron insertion position found today within tRNA genes. If these hairpins possessed a 3'-CCA terminus with different combinations of stem nucleotides (the ancestral operational RNA code), specific aminoacylation and perhaps participation in some form of noncoded protein synthesis might have occurred. However, the identity of the first tRNA and the initial steps in the origin of the genetic code remain elusive.

Results

Here we show evidence that glycine tRNA was the first tRNA, as revealed by a vestigial imprint in the anticodon loop sequences of contemporary descendents. This provides a plausible mechanism for the missing first step in the origin of the genetic code. In 448 of 466 glycine tRNA gene sequences from bacteria, archaea and eukaryote cytoplasm analyzed, CCA occurs immediately upstream of the canonical intron insertion position, suggesting the first anticodon (NCC for glycine) has been captured from the 3'-terminal CCA of one of the interacting hairpins as a result of an ancestral ligation.

Conclusion

That this imprint (including the second and third nucleotides of the glycine tRNA anticodon) has been retained through billions of years of evolution suggests Crick's 'frozen accident' hypothesis has validity for at least this very first step at the dawn of the genetic code.

Reviewers

This article was reviewed by Dr Eugene V. Koonin, Dr Rob Knight and Dr David H Ardell.  相似文献   

8.
9.
10.
11.
12.
13.
《FEBS letters》2014,588(23):4305-4310
During mRNA decoding at the ribosome, deviations from stringent codon identity, or “mistranslation,” are generally deleterious and infrequent. Observations of organisms that decode some codons ambiguously, and the discovery of a compensatory increase in mistranslation frequency to combat environmental stress have changed the way we view “errors” in decoding. Modern tools for the study of the frequency and phenotypic effects of mistranslation can provide quantitative and sensitive measurements of decoding errors that were previously inaccessible. Mistranslation with non-protein amino acids, in particular, is an enticing prospect for new drug therapies and the study of molecular evolution.  相似文献   

14.
15.
The genetic code is used differently by different kinds of species. Each type of genome has a particular coding strategy, that is, choices among degenerate bases are consistently similar for all genes therein. This uniformity in the selection between degenerate bases within each taxonomic group has been discovered by applying new methods to the study of coding variability. It is now possible to calculate relative distances between genomes, or genome types, based on use of the codon catalog by the mRNAs therein.  相似文献   

16.
17.
To explain now-numerous cases of codon reassignment (departure from the “universal” code), we suggest a pathway in which the transformed codon is temporarily ambiguous. All the unusual tRNA activities required have been demonstrated. In addition, the repetitive use of certain reassignments, the phylogenetic distribution of reassignments, and the properties of present-day reassigned tRNAs are each consistent with evolution of the code via an ambiguous translational intermediate. Correspondence to: M. Yarns  相似文献   

18.
Base sequences of φ × 174 and MS2 viruses genomes and of some mRNAs (Coat protein fd virus, Rabbit B. Globin, Rat Growth Hormone and Human Chorionic, Somatomammotropin) show a preferential use of some amino-acid codons. Based on this observation the reliability of three non-degenerate codes are analyzed. All of them display higher reliability than the standing genetic code and specially one formed by a set of non-directly related codons.The absence of these type of codes in Nature is discussed in terms of a balance between reliability and mutability of the genetic information, able to preserve species and maintain evolution  相似文献   

19.
Evolutionary changes in the genetic code   总被引:6,自引:0,他引:6  
The genetic code has been influenced by directional mutation pressure affecting the base composition of DNA, sometimes in the direction of increased GC content and at other times, in the direction of AT. Such pressure led to changes in species-specific usages of codons and tRNA anticodons, and also in amino acid assignments of codons in mitochondria and in several intact organisms. These code changes are probably recent evolutionary events. The genetic code is not 'frozen', but instead it is still evolving.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号