首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Australia's tropical grasslands are dominated by C4grasses,characterized by their unique biochemistry and anatomy. Twonaturalized C4grasses (Panicum coloratum and Cenchrus ciliaris)were used to investigate whether high CO2partial pressure [p(CO2)] influences photosynthetic nitrogen use efficiency andplant nitrogen use efficiency (PNUE and NUE respectively). Plantswere grown for 30 d with four levels of N at p(CO2) of 38 or86 Pa. PNUE was calculated from leaf CO2assimilation rates (A)and leaf N concentrations, and NUE from total leaf N contentand plant dry mass. At each p(CO2), PNUE and NUE were greaterfor C. ciliaris than for P. coloratum due to higher A and drymass combined with lower leaf N concentrations. Elevatedp (CO2)increased PNUE of C. ciliaris only. This effect was due to lowerleaf N concentrations (area basis). At high p(CO2), NUE of C.ciliaris was also greater. This resulted from a 1.6-fold stimulationof dry mass by high p(CO2). Although dry mass of P. coloratumwas increased 1.2-fold by elevated p(CO2), its NUE was unaffected.Leaf transpiration rates were halved at elevated p(CO2), andwe suggest that this factor plays a major role in the growthresponse of C4grasses to high p(CO2). Copyright 2001 Annalsof Botany Company Panicum coloratum, Cenchrus ciliaris, nitrogen use efficiency, elevated CO2, leaf N concentration, growth, photosynthesis  相似文献   

2.
Commercially available cell wall-degrading enzymes frequentlyused for protoplast isolation inhibited CO2 fixation and photosyntheticO2 evolution, and stimulated dark respiration by leaf tissueand isolated mesophyll protoplasts of Nicotiana tabacum L. andAntirrhinum majus L. They also depolarized the membrane potentialof cells of leaf tissue, inhibited uptake of 86Rb by tobaccoleaf tissue and isolated mesophyll protoplasts, and stimulated36CI uptake by tobacco leaf tissue. Where studied, these effectswere found to be reversible. The depolarization effect on Antirrhinumleaf cells occurred even when the enzyme preparations had beendenatured, dialysed, or desalted, and the effect was greatestin those fractions of the enzyme preparation which showed thehighest cellulase activity. Plasmolysis of tobacco leaf tissue inhibited photosyntheticO2 evolution, CO2 fixation, and 86Rb uptake to levels belowthose exhibited by isolated protoplasts in media of the samecomposition and osmolarity. The implications of these resultsfor work with leaf tissue and isolated protoplasts are discussed.  相似文献   

3.
The effects of elevated CO2and temperature on the growth, resourceacquisition and resource allocation of small birch seedlings(Betula pendula Roth.) were examined under conditions of non-limitingsoil, water and nutrient supply. Seedlings were planted in potsand placed in controlled environment chambers either under normalambient conditions (CON), or in the presence of elevated CO2(approx.700 µmol mol-1; Elev. C), elevated temperature (approx.3 °C above the outside ambient temperature; Elev. T) ora combination of elevated CO2and elevated temperature (Elev.C + T). Both Elev. C and Elev. T significantly increased biomassaccumulation, but the extent of the increase depended greatlyon the stage of development of the seedlings. Furthermore, thetheoretically expected positive effect of the warmer temperatureon the CO2-induced stimulation of growth was not observed. Byanalysing resource acquisition (i.e. CO2 , nitrogen and wateruptake), seedling development, leaf area production and theallocation pattern, it was deduced that the CO2-stimulated increasein biomass resulted mainly from the initial ‘fertilization’effect of CO2while the temperature-induced increase in biomassstemmed from higher net carbon intake during the middle andlatter parts of the growing season achieved by virtue of theincreased leaf area and larger photosynthetic capacity. Thelack of positive stimulation by temperature under Elev. C +T may be related in part to (1) CO2-induced acceleration ofseedling development, which led to a small or no response toCO2enrichment and lower leaf area production during the latterpart of the growth season, and (2) a cumulative delay in theresponse of growth to the warmer temperature, which did notincrease net carbon intake when the seedlings were at a juvenilestage. Neither Elev. C nor Elev. T altered the root:shoot ratioduring early growth, but Elev. C increased it during the latterpart of the growth season while Elev. T decreased it, possiblyon account of a change in leaf area retention. Finally, thenitrogen and water use efficiencies of seedlings at differentstages of development are discussed. Copyright 2001 Annals ofBotany Company Photosynthesis, growth, resource acquisition and allocation, elevated CO2and temperature, Betula pendula Roth  相似文献   

4.
Net photosynthesis rate (Pn), stomatal conductance to CO2 andresidual conductance to CO2 were measured in the last six leaves(the sixth or flag leaf and the preceding five leaves) of Triticumaestivum L. cv. Kolibri plants grown in Mediterranean conditions.Recently fully expanded leaves of well-watered plants were alwaysused. Measurements were made at saturating photosynthetic photonflux density, and at ambient CO2 and O2 levels. The specificleaf area, total organic nitrogen content, some anatomical characteristics,and other parameters, were measured on the same leaves usedfor gas exchange experiments. A progressive xeromorphic adaptation in the leaf structure wasobserved with increasing leaf insertion levels. Furthermore,mesophyll cell volume per unit leaf area (Vmes/A) decreasedby 52·6% from the first leaf to the flag leaf. Mesophyllcell area per unit leaf area also decreased, but only by 24·5%.However, nitrogen content per unit mesophyll cell volume increasedby 50·6% from the first leaf to the flag leaf. This increasecould be associated to an observed higher number of chloroplastcross-sections per mm2 of mesophyll cell cross-sectional areain the flag leaf: values of 23000 in the first leaf and 48000in the flag leaf were obtained. Pn per unit leaf area remainedfairly constant at the different insertion levels: values of33·83±0·93 mg dm–2 h–1 and32·32±1·61 mg dm–2 h–1 wereobtained for the first leaf and the flag leaf, respectively.Residual conductance, however, decreased by 18·2% fromthe first leaf to the flag leaf. Stomatal conductance increasedby 41·7%. The steadiness in Pn per unit leaf area across the leaf insertionlevels could be mainly accounted for by an opposing effect betweena decrease in Vmes/A and a more closely packed arrangement ofphotosynthetic apparatus. Adaptative significance of structuralchanges with increasing leaf insertion levels and the steadinessin Pn per unit leaf area was studied. Key words: Photosynthesis, structure, wheat  相似文献   

5.
Effects of atmospheric CO2 enrichment to a level above 600 parts10–6 on leaf and canopy gas exchange characteristics wereinvestigated in Trifolium repens, using an open system for gasexchange measurement. The cuvettes of the system served as growthchambers, allowing continuous measurement in a semi-controlledenvironment of ±350 and ±600 parts 10–6CO2, respectively. Carbon balance data were compared with cropyield and effects on the canopy level were compared with measuredleaf responses of photosynthesis and stomatal behaviour. Photosyntheticstimulation by high CO2 was stronger at the canopy level (103%on average) than for leaves (90% in full light), as a consequenceof accelerated foliage area development. The latter increasedabsolute water consumption by 16%, despite strong stomatal closure.The overall result was a 63% improvement in canopy water useefficiency (WUE), while leaf WVE increased almost 3-fold insaturating light. The stomatal response was such that, whilethe internal CO2 concentration in the leaf, ch increased withrising atmospherical CO2 concentration, ca, ci/ca was somewhatdecreased. Total canopy resistance, Rc, was generally lowerat high CO2 levels, despite higher leaf resistance. Higher canopyCO2 loss at night and faster light extinction in a larger-sizedhigh CO2 canopy were major drawbacks which prevented a furtherincrease in dry matter production (the harvest index was increasedby a factor 1.83). Key words: CO2 enrichment, canopy CO2 exchange, carbon balance, water use efficiency, leaf and canopy resistance  相似文献   

6.
The Effect of Temperature on Leaf Appearance in Rice   总被引:10,自引:3,他引:10  
Temperature is the principal environmental determinant of cropleaf appearance. The objective of this study is to analyse whetherthere are different effects of day temperature (TD) and nighttemperature (TN) on main-stem leaf appearance in rice (OryzasativaL.). Plants of 12 rice cultivars were grown at five constant temperatures(22, 24, 26, 28 and 32 °C) and four diurnally fluctuatingtemperatures (TD/TN: 26 /22, 30 /22, 22 /26 and 22 /30 °C)with a constant photoperiod of 12hd-1. The leaf appearance onthe main stem was measured. A constant change in leaf appearance rate was observed duringontogeny. The relation between the number of emerged leavesand days from seedling emergence was described by a power-lawequation with only one cultivar-specific parameter. Values forthis parameter were estimated for the five constant temperaturetreatments, and the relation between this parameter and temperaturewas quantified by a nonlinear model. Leaf appearance for thefour fluctuating temperature treatments could be accuratelypredicted on the basis of these relations in each cultivar.This indicated that there were no specific effects ofTDandTNonleaf appearance in rice, in contrast with phenological developmentto flowering. The optimum temperature for leaf development wasfound to be substantially higher than for development to flowering. The final main-stem leaf number differed with diurnal temperatureconditions. When a diurnal temperature delayed flowering, itincreased the leaf number as well. This might explain whyTDandTNhada different effect on development to flowering but not on leafdevelopment. Oryza sativa; rice; leaf appearance; leaf number; day and night temperature  相似文献   

7.
Agrostis capillaris L.5, Festuca vivipara L. and Poaalpina L.were grown in outdoor open-top chambers at either ambient (340 3µmol mol–1) or elevated (6804µmol mol–1)concentrations of atmospheric carbon dioxide (CO2) for periodsfrom 79–189 d. Photosynthetic capacity of source leaves of plants grown atboth ambient and elevated CO2 concentrations was measured atsaturating light and 5% CO2. Dark respiration of leaves wasmeasured using a liquid phase oxygen electrode with the buffersolution in equilibrium with air (21% O2, 0.034% CO2). Photo-syntheticcapacity of P. alpina was reduced by growth at 680 µmolmol–1 CO2 by 105 d, and that of F. vivipara was reducedat 65 d and 189 d after CO2 enrichment began, suggesting down-regulationor acclimation. Dark respiration of successive leaf blades ofall three species was unaltered by growth at 680 relative to340 µmol mol–1 CO2. In F. vivipara, leaf respirationrate was markedly lower at 189 d than at either 0 d or 65 d,irrespective of growth CO2 concentration. There was a significantlylower total non-structural carbohydrate (TNC) concentrationin the leaf blades and leaf sheaths of A. capillaris grown at680µmol mol–1 CO2. TNC of roots of A. capillariswas unaltered by CO2 treatment. TNC concentration was increasedin both leaves and sheaths of P. alpina and F. vivipara after105 d and 65 d growth, respectively. A 4-fold increase in thewater-soluble fraction (fructan) in P. alpina and in all carbohydratefractions in F. vivipara accounted for the increased TNC content. In F. vivipara the relationship between leaf photosyn-theticcapacity and leaf carbohydrate concentration was such that therewas a strong positive correlation between photosynthetic capacityand total leaf N concentration (expressed on a per unit structuraldry weight basis), and total nitrogen concentration of successivemature leaves reduced with time. Multiple regression of leafphotosynthetic capacity upon leaf nitrogen and carbohydrateconcentrations further confirmed that leaf photosynthetic capacitywas mainly determined by leaf N concentration. In P. alpina,leaf photosynthetic capacity was mainly determined by leaf CHOconcentration. Thus there is evidence for down-regulation ofphotosynthetic capacity in P. alpina resulting from increasedcarbohydrate accumulation in source leaves. Leaf dark respiration and total N concentration were positivelycorrelated in P. alpina and F. vivipara. Leaf dark respirationand soluble carbohydrate concentration of source leaves werepositively correlated in A. capillaris. Changes in source leafphotosynthetic capacity and carbohydrate concentration of plantsgrown at ambient or elevated CO2 are discussed in relation toplant growth, nutrient relations and availability of sinks forcarbon. Key words: Elevated CO2, Climate change, grasses, carbohydrate partitioning, photosynthesis, respiration  相似文献   

8.
Trifolium alpinum L. is a high-quality alpine forage plant growingspontaneously from 1900 to 2800 m above sea level and is widelydistributed in Piedmont and the Valle d'Aosta (Italy), whereit can reach population frequencies of 90 per cent. Yields weredetermined on forage harvested in the Valle dell'Orco (Piedmont)and were comparable to cultivated clovers from higher latitudes;yields decreased progressively as the elevation increased. Thechemical and nutritional characteristics of the forage, thoughcomparable to clovers cultivated in the Po valley (Italy), were,however, more constant. The structure of the leaf lamina asrelated to elevation was investigated using light microscopy,TEM and SEM. This is complemented by data on chlorophyll concentration,succulence, specific leaf weight and area. At all elevationsT. alpinum lacks, apart from bundle sheath cell chloroplastsin a centrifugal arrangement, the structural characteristicsof C4 plants. The chlorophyll a:b ratio (less than four) istypical of a C2 plant. Succulence indices (S and Sm) were verylow, making CAM pathway photosynthesis unlikely. Unusual anddifficult to interpret structures included: small functionalchloroplasts in both the epidermises, stomata present almostexclusively in the upper epidermis and mitochondria enveloped(or enclosed) by chloroplasts. It was observed that, as theelevation increases, populations are selected which are well-adaptedfor gas exchange (increase in specific leaf area, stomatal densityand intercellular spaces) and characterized by a decrease inthe grana thylacoid:integrana thylacoid ratio (consistent withthe increase in the chlorophyll a:b ratio), the per cent water,Sm and the specific leaf weight. Trifolium alpinum L., alpine trefoil, leaf structures, photosynthesis, yield, elevation, C2, C4  相似文献   

9.
The Diffusive Conductivity of the Stomata of Wheat Leaves   总被引:2,自引:0,他引:2  
A leaf chamber (described in detail) was used alternately witha resistance porometer to measure resistance to viscous flowof air through the leaf, and with a diffusion porometer to measurethe differential diffusive flow of hydrogen and air (VHVA)through the leaf and the component of hydrogen flow (V'H) movingstraight across the leaf. The resistance of the mesophyll isneeded for interpretation: estimates by three different methodsfor viscous flow did not agree very well, but two differentmethods for diffusive flow gave good agreement. For wheat leaves,only very large errors are important. Formal analysis is in three appendixes: I. Interpretation ofviscous and diffusive flow in small pores involves some problemsin molecular physics, complicated by the particular geometryof the wheat stoma. With some uncertainty, formal expressionsare derived for the viscous resistance of a single stoma, rv,and for the resistances to diffusion of hydrogen and air, andof water vapour and carbon dioxide, all expressed as rs persquare centimetre of leaf surface. The analysis for hydrogen/airis the most uncertain; that for water vapour and carbon dioxideis more reliable. II. An indication is given of the flow characteristicsof the leaf-chamber system, from which rv can be derived, andof the basis for estimating mesophyll resistance. III. The methodof converting estimates of rs into estimates of VHVAand V'H is given. The results presented are expressed as nearly as possible interms of the quantities which were measured. For five leavesthe dependence of VHVA on V'H agrees well with theoreticalpredictions; the dependence of VHVA (and V'H) on rv,on average, agrees well with prediction, but involves the assumptionthat the stomata get shorter as they close. The agreement isgood enough to suggest that the formal expressions for rs interms of stomatal dimensions and molecular gas constants arereliable enough to be carried forward into future transpirationand assimilation studies. The minimum value of ra for watervapour (c. 3 sec cm+1) is close to values found elsewhere bydifferent techniques. At very small stomatal openings there was a large deviationfrom predicted behaviour, such as would occur if the imposedexcess air pressure further closed the stomata during viscousflow experiments.  相似文献   

10.
We examined changes in dry weight and leaf area within Dactylisglomerata L. plants using allometric analysis to determine whetherobserved patterns were truly affected by [CO2] and N supplyor merely reflect ontogenetic drift. Plants were grown hydroponicallyat four concentrations of in controlled environment cabinets at ambient (360 µll–1) or elevated (680 µl l–1) atmospheric[CO2]. Both CO2and N enrichment stimulated net dry matter production.Allometric analyses revealed that [CO2] did not affect partitioningof dry matter between shoot and root at high N supply. However,at low N supply there was a transient increase in dry matterpartitioning into the shoot at elevated compared to ambient[CO2] during early stages of growth, which is inconsistent withpredictions based on optimal partitioning theory. In contrast,dry matter partitioning was affected by N supply throughoutontogeny, such that at low N supply dry matter was preferentiallyallocated to roots, which is in agreement with optimal partitioningtheory. Independent of N supply, atmospheric CO2enrichment resultedin a reduction in leaf area ratio (LAR), solely due to a decreasein specific leaf area (SLA), when plants of the same age werecompared. However, [CO2] did not affect allometric coefficientsrelating dry weight and leaf area, and effects of elevated [CO2]on LAR and SLA were the result of an early, transient stimulationof whole plant and leaf dry weight, compared to leaf area production.We conclude that elevated [CO2], in contrast to N supply, changesallocation patterns only transiently during early stages ofgrowth, if at all. Copyright 2000 Annals of Botany Company Allometric growth, carbon dioxide enrichment, Cocksfoot, Dactylis glomerata L., dry weight partitioning, leaf area ratio, nitrogen supply, shoot:root ratio, specific leaf area  相似文献   

11.
MARSHALL  B.; VOS  J. 《Annals of botany》1991,68(1):33-39
Measurements of the rate of light-saturated photosynthesis (Pmax)were made on terminal leaflets of potato plants growing in cropssupplied with 0, 3, 6, 12, 24 and 36 g N m–2. Measurementswere made between 100 and 154 d after planting. Two types ofleaf were selected—the fourth leaf on the second-levelbranch (L4, B1) and the youngest terminal leaflet that was measurable(LYM). Later, the total nitrogen concentration of each leaflet(NL) was measured. A linear regression between Pmax and NL,common to both leaf positions, explained 68.5% of the totalvariation. With L4, B1 leaves there was a significant improvementin the proportion of variation explained when regressions withseparate intercepts and a common slope were fitted to individualfertilizer treatments. These results suggest that an increasingproportion of leaf nitrogen was not associated with the performanceof the photosynthetic system with increasing nitrogen supply.This separation between nitrogen treatments was not as clearfor LYM leaves. Stomatal conductance to transfer of water vapourwas neither influenced by leaf position nor directly by nitrogensupply. Rather conductance declined in parallel with the declinein photosynthetic capacity. Solanum tuberosum, potato, nitrogen, photosynthesis, stomatal conductance, leaf  相似文献   

12.
The effect of SO2 fumigation (2 ppm, v/v) on photosynthesisin spinach leaves in vivo was investigated by measuring Chla fluorescence (OIDP transient) and the electron paramagneticresonance (EPR) signal I. SO2 fumigation raised the I levelto yield the ID dip and suppressed the DP transient before anyvisible damage occurred in the leaf. In SO2-fumigated leaves,the time course of EPR signal I indicates that reduction ofP700 by white light illumination was inhibited but dark reductionof P700 was not significantly affected. Photosynthetic O2 evolutionwas also inhibited by SO2 fumigation. All of these effects werereversible after removal of SO2. The variable part of the fluorescencein the presence of DCMU was only slightly affected and decreasedas the fumigation time increased. We concluded that SO2 fumigationreversibly inhibits the photosynthetic water-splitting enzymesystem and it injures the reaction center of PS II in vivo whenthe fumigation time is prolonged. We discussed the role of possible toxicants derived from SO2within the leaf on the basis of the SO2 action on Chl a fluorescence. (Received December 8, 1983; Accepted May 7, 1984)  相似文献   

13.
The effect of tetraploidy on leaf characteristics and net gasexchange was studied in diploid (2x ) and autotetraploid (4x) ‘Valencia’ sweet orange (Citrus sinensis (L.)Osb.) and ‘Femminello’ lemon (Citrus limon (L.)Burm. f.) leaves. Comparisons between ploidy levels were madeunder high irradiance (I) in a growth chamber or low total Iin a glasshouse. Tetraploids of both species had thicker leaves,larger mesophyll cell volume and lower light transmittance thandiploids regardless of growth I. Mesophyll surface area perunit leaf area of 2x leaves was 5–15% greater than on4x leaves. Leaf thickness and mesophyll cell volume were greaterin high I leaves than low I leaves. In high I, average leafarea was similar for 2x and 4x leaves, whereas in low I it was30% greater in 4x than in 2x leaves. Nitrogen and chlorophyllconcentration per cell increased with ploidy level in both growthconditions. The ratio of chlorophyll a:b was 25% greater in2x than in 4x leaves. When net CO2assimilation rate (ACO2) wasbased on leaf area, 4x orange leaves had 24–35% lowerACO2than their diploids. There were no significant differencesin ACO2between 2x and 4x orange or lemon leaves when expressedon a per cell basis. Overall, lower ACO2per unit leaf area oftetraploids was related to increase in leaf thickness, largermesophyll cell volume, the decrease in mesophyll area exposedto internal air spaces, and the lower ratio between cell surfaceto cell volume. Such changes probably increased the resistanceto CO2diffusion to the site of carboyxlation in the chloroplasts. Cell volume; chlorophyll; irradiance; leaf thickness; nitrogen; photosynthesis; ploidy; Citrus limon ; C. sinensis ; ‘Valencia’ sweet orange; ‘Femminello’ lemon  相似文献   

14.
To test whether stomatal density measurements on oak leaf remainsare reliable tools for assessing palaeoatmospheric carbon dioxideconcentration [CO2], under changing Late Miocene palaeoenvironmentalconditions, young seedings of oak (Quercus petraea,Liebl.) weregrown at elevatedvs.ambient atmospheric [CO2] and at high humiditycombined with an increased air temperature. The leaf anatomyof the young oaks was compared with that of fossil leaves ofthe same species. In the experiments, stomatal density and stomatalindex were significantly decreased at elevated [CO2] in comparisonto ambient [CO2]. Elevated [CO2] induced leaf cell expansionand reduced the intercellular air space by 35%. Leaf cell sizeor length were also stimulated at high air humidity and temperature.Regardless of a temperate or subtropical palaeoclimate, leafcell size in fossil oak was not enhanced, since neither epidermalcell density nor length of the stomatal apparatus changed. Theabsence of these effects may be attributed to the phenologicalresponse of trees to climatic changes that balanced temporalchanges in environmental variables to maintain leaf growth underoptimal and stable conditions.Quercus petraea,which evolvedunder recurring depletions in the palaeoatmospheric [CO2], maypossess sufficient phenotypic plasticity to alter stomatal frequencyin hypostomatous leaves allowing high maximum stomatal conductanceand high assimilation rates during these phases of low [CO2].Copyright1998 Annals of Botany Company Atmospheric CO2, high humidity, elevated temperature,Quercus petraea,durmast oak, Late Miocene, palaeoclimates, leaf anatomy, stomatal density, stomatal index  相似文献   

15.
It has been established that Kalanchoe blossfeldiana and Xanthiumpensylvanicum require CO2 during the light period of short daysfor successful photoperiodic induction of flowering, even ifall but the induced leaf are held in normal air. In X. pensylvanicumfloral induction in normal air was independent of the starchstatus of the leaves but when reserves were reduced, lack ofCO2 in the light suppressed floral induction to an even greaterextent. Injection into the induced leaf (Kalanchoe) or leaftip feeding (Xanthium) of carbohydrates, organic and amino acidsor several other metabolites failed to substitute for the CO2requirement for induction. A small response was produced by10 mg ml–1 sucrose in X. pensylvanicum while in normalair 25 parts 10–6 ATP reduced the time to flowering inK. blossfeldiana and 10–4 M proline was inhibitory. Anexperiment on the light requirement established a need for redlight ( max 660 nm) during photoperiods but red light alonedid not facilitate maximal induction. It is concluded that someearly, possibly labile, product of photosynthetic CO2 fixationis essential to floral induction in these species.  相似文献   

16.
Experiments have examined the effect of phenylmercuric acetate(PMA) on the guard cells of Commelina communis. In one series,PMA was supplied to the leaf surface; after different time intervalsthe epidermis was removed and the ability of the stomata toopen was determined. In the other series, different concentrationsof PMA were included in the medium used for inccubating epidermalstrips with which ion-stimulated stomatal opening was assayed.At concentrations of 10-54 M and above the effect of PMA wassevere and the structural integrity of the guard cells was affected;they were unable to accumulate neutral red. At concentrationsarpound 10-6 M the guard cells were less affected and PMA broughtabout a transient stimulation of stomatal opening by releasingsubsidiary-cell turgor pressure. A solution of 5 x 10-4 M PMA applied to leaves reduced by halfthe photosynthetic 14CO2 incorporation into C. communis mesophyll.In Zea mays it increased the CO2 compensation point and alsothe resistance to diffusion in the gas phase (RA, but therewas a proportionately greater increase in the apparent liquidphase resistance (Rt). This direct inhibition of mesophyll photosynthesisundermines one of the major objectives of applying anatitranspirants,and for this reason it is suggested that PMA is unsuitable forgeneral application to crops.  相似文献   

17.
Rumex obtusifolius plants were grown for several months in daylitenvironment chambers (Solardomes) force-ventilated with aircontaining 350 or 600 µ;mol mol–1 C02. ElevatedCO2 was found to accelerate the natural ontogenic decline inphotosynthesis, but did not reduce leaf duration. In both CO2treatments photosynthetic rates declined progressively withincreasing leaf age, the decline being greater for plants grownin elevated C02 such that rates became lower than in ambientCO2. The degree of CO2-induced photosynthetic down-regulationas determined by A/C1 analysis was found to be dependent onleaf age. The major contribution to the decline in photosynthesiswas likely to be a reduction in Rubisco activity as changesin stomataland mesophyll limitations were small. Instantaneouswater use efficiency (WUE1) was greater for plants in elevatedCO2, but these values declined rapidly with leaf age, whereasin ambient CO2 values were always lower, but were maintainedfor longer. Growth analysis indicated an increased root:-shootratio for plants grown in elevated CO2, this occurring almostentirely as a result of increased root growth. Greater rootproliferation and increased WUE1, are characteristics whichshould give this persistent and troublesome weed an increasedcompetitive advantage under projected conditions of climatechange Key words: tusifoliu, elevated CO2, gas exchange, leaf age, senescence  相似文献   

18.
REY  ANA; JARVIS  PAUL G. 《Annals of botany》1997,80(6):809-816
A field experiment consisting of 18 birch trees grown in opentop chambers in ambient and elevated CO2concentrations was setup with the aim of testing whether the positive growth responseobserved in many short-term studies is maintained after severalgrowing seasons. We present the results of growth and biomassafter 4.5 years of CO2exposure, one of the longest studies sofar on deciduous tree species. We found that elevated CO2ledto a 58% increase in biomass at the end of the experiment. However,estimation of stem mass during the growing season showed thatelevated CO2did not affect relative growth rate during the fourthgrowing season, and therefore, that the large accumulation ofbiomass was the result of an early effect on relative growthrate in previous years. Trees grown in elevated CO2investedmore carbon into fine roots and had relatively less leaf areathan trees grown in ambient CO2. In contrast with previous studies,acceleration of growth did not involve a significant declinein nutrient concentrations of any plant tissue. It is likelythat increased fine root density assisted the trees in meetingtheir nutrient demands. Changes in the species composition ofthe ectomycorrhizal fungi associated with the trees grown inelevated CO2in favour of late successional species supportsthe hypothesis of an acceleration of the ontogeny of the treesin elevated CO2.Copyright 1997 Annals of Botany Company Betula pendula; silver birch; elevated CO2; growth; biomass allocation; ectomycorrhizas; tissue composition; nutrients; leaf morphology; specific leaf area; stomatal density; shoot structure  相似文献   

19.
Dwarf french beans (Phaseolus vulgaris var. Canadian Wonder)were grown in chambers at 25?C with the roots aerated at 20per cent oxygen and tops variously maintained at: T1 O2 0.21;CO2 270?10–6: T2; O2 0.05, CO2, CO2 270?10–6: T3;O2 0.21; CO2 550?10–6. Experiment 1 (T1 and T2) lasted2 weeks: Experiment 2 (T1 T2 and T3) only one week. Hourly estimatesof CO2 uptake were made by gas analysis and weekly estimatesof fresh weight, dry matter in tops and roots, and leaf area,by sampling. Light intensity was 80 W m–2 of photosyntheticallyactive radiation. An attempt was made to explain the results in terms of a simplelight absorption model such that where dV/dt is the rate of CO2 uptake per plant, ßis the photosynthetic efficiency, I0 is the incident light intensity,f is the fraction of incident light absorbed by unit leaf layerand L is the leaf area index. The analysis showed that ß(T2)was at least double ß(T1), whilst f(T2) was smallerthan f(T1) at a given leaf area. The results also required thatthroughout the period of the experiment, fL(T1)=fL(T2) at anygiven time, i.e. the treatment with the larger leaf area (T2)has the smaller value of f, and therefore intercepts less lightper unit leaf area. This could be advantageous for plant growth,but requires further experiments. The photosynthetic rates per unit leaf are about 40 per centgreater in T2 than T1. Over the relatively short period of the experiment the resultsare adequately described by U=btn, where U is the accumulatedcarbon dioxide uptake, b is related to the photosynthetic efficiency(different for the differing treatments), and n is a constant(similar for all treatments). This relationship with time isbelieved to be a relationship with accumulated radiation, forthe light was constant throughout the experiments. Comparisons of carbon fixed (measured gas uptake) and dry matteraccumulation (sampling) show great scatter with an average valueof 0.43. The first week's results were generally smaller thanthis value and the second week's greater. Energy fixation as a fraction of photosynthetically active radiationon the ground area covered by the plants ranged from 3.5 to10 per cent. The results from treatment T3 were similar to T2 suggestingthat increasing CO2 concentration decreases the growth inhibitionat 21 per cent O2.  相似文献   

20.
The effects of increased atmospheric carbon dioxide (CO2) of700 µmol mol–1 and increased air temperature of+ 4C were examined in Lolium perenne L. cv. Vigor, growingin semi-controlled greenhouses. Leaf growth, segmental elongationrates (SER), water relations, cell wall (tensiometric) extensibility(%P) and epidermal cell lengths (ECL) were measured in expandingleaves in spring and summer. In elevated CO2, shoot dry weight (SDW) increased in mid-summer.In both seasons, SDW decreased in elevated air temperatureswith this reduction being greater in summer as compared to spring.Specific leaf area (SLA) decreased in elevated CO2 and in CO2 temperature in both seasons. In spring, increased leaf extensionand SER in elevated CO2 were linked with increased ECL, %P andfinal leaf size whilst in summer all were reduced. In high temperature,leaf extension, SER, %P and final leaf size were reduced inboth seasons. In elevated CO2 temperature, leaf extension,SER, %P, and ECL increased in spring, but final leaf size remainedunaltered, whilst in summer all decreased. Mid-morning waterpotential did not differ with CO2 or temperature treatments.Leaf turgor pressure increased in elevated CO2 in spring andremained similar to the control in summer whilst solute potentialdecreased in spring and increased in summer. Contrasting seasonalgrowth responses of L. perenne in response to elevated CO2 andtemperature suggests pasture management may change in the future.The grazing season may be prolonged, but whole season productivitymay become more variable than today. Key words: Lolium perenne, ryegrass, CO2 and temperature, leaf extension, cell wall rheology  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号