首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lu W  Luo Y  Chang G  Sun X 《Biosensors & bioelectronics》2011,26(12):4791-4797
In this paper, we report on the first preparation of well-defined SiO(2)-coated graphene oxide (GO) nanosheets (SiO(2)/GO) without prior GO functionalization by combining sonication with sol-gel technique. The functional SiO(2)/GO nanocomposites (F-SiO(2)/GO) obtained by surface functionalization with NH(2) group were subsequently employed as a support for loading Ag nanoparticles (AgNPs) to synthesize AgNP-decorated F-SiO(2)/GO nanosheets (AgNP/F-SiO(2)/GO) by two different routes: (1) direct adsorption of preformed, negatively charged AgNPs; (2) in situ chemical reduction of silver salts. The morphologies of these nanocomposites were characterized by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). It is found that the resultant AgNP/F-SiO(2)/GO exhibits remarkable catalytic performance for H(2)O(2) reduction. This H(2)O(2) sensor has a fast amperometric response time of less than 2s. The linear range is estimated to be from 1×10(-4) M to 0.26 M (r=0.998) and the detection limit is estimated to be 4 × 10(-6) M at a signal-to-noise ratio of 3, respectively. We also fabricated a glucose biosensor by immobilizing glucose oxidase (GOD) into AgNP/F-SiO(2)/GO nanocomposite-modified glassy carbon electrode (GCE) for glucose detection. Our study demonstrates that the resultant glucose biosensor can be used for the glucose detection in human blood serum.  相似文献   

2.
There is an increasing interest in the application of photocatalytic properties for disinfection of surfaces, air, and water. Titanium dioxide is widely used as a photocatalyst, and the addition of silver reportedly enhances its bactericidal action. However, the synergy of silver nanoparticles and TiO(2) is not well understood. The photocatalytic elimination of Bacillus atrophaeus was examined under different calcination temperatures, dip-coating speeds, and ratios of TiO(2), SiO(2), and Ag to identify optimal production conditions for the production of TiO(2)- and/or TiO(2)/Ag-coated glass for surface disinfection. Photocatalytic disinfection of pure TiO(2) or TiO(2) plus Ag nanoparticles was dependent primarily on the calcination temperature. The antibacterial activity of TiO(2) films was optimal with a high dip-coating speed and high calcination temperature (600°C). Maximal bacterial inactivation using TiO(2)/Ag-coated glass was also observed following high-speed dip coating but with a low calcination temperature (250°C). Scanning electron microscopy (SEM) showed that the Ag nanoparticles combined together at a high calcination temperature, leading to decreased antibacterial activity of TiO(2)/Ag films due to a smaller surface area of Ag nanoparticles. The presence of Ag enhanced the photocatalytic inactivation rate of TiO(2), producing a more pronounced effect with increasing levels of catalyst loading.  相似文献   

3.
Li W  Zeng T 《PloS one》2011,6(6):e21082
A new methodology was developed to synthesize uniform titania anatase nanocrystals by the hydrolysis of titanium chloride in sulfuric acid aqueous solutions at 0-90°C. The samples were characterized by Raman spectroscopy, UV-visible spectroscopy, transmission electron microscopy (TEM), electron diffraction (ED), and an Energy dispersive X-ray spectroscopy (EDS). The effects of the reaction temperature, mole ratio of SO(4)(2-) to Ti(4+), and the calcinations temperature on the particle size and crystal phase were investigated. Depending on the acidity, the hydrolysis temperature, and the calcination temperature, rhombic anatase nanocrystals sizes in the range of 10 nm to 50 nm were obtained. In the additive of sulfuric acid, Raman spectra and electron diffraction confirmed that the nanoparticles are composed of anatase TiO(2). No other titania phases, such as rutile or brookite, were detected.  相似文献   

4.
This study focuses on the preparation and characterization of single phase NiO nanoparticles. At first, nickel-o-phthalate complexes as precursor were synthesized through semisolid phase reaction method and then NiO nanoparticles were obtained via a solid-state decomposition procedure of layered coordination nickle-o-phthalate complexes formulated as [Ni(pht)(H2O)2] and [Ni(pht)2]. In addition, the effects of calcination temperature and metal-to-ligand ratio on the particle size and morphology of NiO were investigated. Thermogravimetric analysis (TGA) was applied to determine the thermal behavior of complexes. The crystalline structure of products by X-ray diffractometer (XRD), morphology of particles by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were studied. The composition of as-prepared sample was studied by X-ray photoelectron spectroscopy (XPS) spectra. Analysis of FT-IR spectra confirmed the composition of products. The magnetic property was studied with vibrating sample magnetometer (VSM).  相似文献   

5.
Gao P  Liu ZH  Xue G  Han B  Zhou MH 《Bioresource technology》2011,102(3):3645-3648
Effects of different pretreatment protocols in (NH(4))(2)HPO(4) activation of rice straw on porous activated carbon evolution were evaluated. The pore structure, morphology and surface chemistry of obtained activated carbons were investigated by nitrogen adsorption, scanning electron microscopy and Fourier transform infrared spectroscopy. It was found that pretreatment combining impregnation with (NH(4))(2)HPO(4) and preoxidation could significantly affect the physicochemical properties of prepared activated carbons. The apparent surface area and total pore volume as high as 1154 m(2)/g and 0.670 cm(3)/g were obtained respectively, when combined process of impregnation followed by preoxidation at 200°C and activation at 700°C was carried out. Meanwhile, the activated carbon yield and maximum methylene blue adsorption capacity up to 41.14% and 129.5 mg/g were achieved, respectively. The results exhibited that (NH(4))(2)HPO(4) could be an effective activating agent for producing activated carbons from rice straw.  相似文献   

6.
A novel core-shell composite of gold nanoparticles (AuNPs) and SiO(2) molecularly imprinted polymers (AuNPs@SiO(2)-MIPs) was synthesized through sol-gel technique and applied as a molecular recognition element to construct an electrochemical sensor for determination of dopamine (DA). Compared with previous imprinting recognition, the main advantages of this strategy lie in the introduction and combination of AuNPs and biocompatible porous sol-gel material (SiO(2)). The template molecules (DA) were firstly adsorbed at the AuNPs surface due to their excellent affinity, and subsequently they were further assembled onto the polymer membrane through hydrogen bonds and π-π interactions formed between template molecules and silane monomers. Cyclic voltammetry (CV) was carried out to extract DA molecules from the imprinted membrane, and as a result, DA could be rapidly and effectively removed. The AuNPs@SiO(2)-MIPs was characterized by ultraviolet visible (UV-vis) absorbance spectroscopy, transmission electron microscope (TEM) and Fourier transform infrared spectrometer (FT-IR). The prepared AuNPs@SiO(2)-MIPs sensor exhibited not only high selectivity toward DA in comparison to other interferents, but also a wide linear range over DA concentration from 4.8×10(-8) to 5.0×10(-5)M with a detection limit of 2.0×10(-8)M (S/N=3). Moreover, the new electrochemical sensor was successfully applied to the DA detection in dopamine hydrochloride injection and human urine sample, which proved that it was a versatile sensing tool for the selective detection of DA in real samples.  相似文献   

7.
Iron oxide (Fe(3)O(4)) nanoparticles prepared using co-precipitation method have been dispersed in chitosan (CH) solution to fabricate nanocomposite film on indium-tin oxide (ITO) glass plate. Glucose oxidase (GOx) has been immobilized onto this CH-Fe(3)O(4) nanocomposite film via physical adsorption. The size of the Fe(3)O(4) nanoparticles estimated using X-ray diffraction (XRD) pattern and transmission electron microscopy (TEM) has been found to be approximately 22 nm. The CH-Fe(3)O(4) nanocomposite film and GOx/CH-Fe(3)O(4)/ITO bioelectrode have been characterized using UV-visible and Fourier transform infrared (FTIR) spectroscopic and scanning electron microscopy (SEM) techniques, respectively. This GOx/CH-Fe(3)O(4)/ITO nanocomposite bioelectrode has response time of 5s, linearity as 10-400 mgdL(-1) of glucose, sensitivity as 9.3 microA/(mgdLcm(2)) and shelf life of about 8 weeks under refrigerated conditions. The value of Michaelis-Menten (K(m)) constant obtained as 0.141 mM indicates high affinity of immobilized GOx towards the substrate (glucose).  相似文献   

8.
Corn porous starch: preparation, characterization and adsorption property   总被引:1,自引:0,他引:1  
This study was carried out to develop a new type of modified starch based on α-amylase and glucoamylase. The structural and chemical characteristics of the porous starch were determined by Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD) and differential scanning calorimetry (DSC). The potential application of the porous starch as an adsorbent was evaluated using methyl violet as an adsorbed model. The adsorption capacity was optimized by investigating the reaction factors, including the mass ratio of α-amylase to glucoamylase (mα-amylase/mglucoamylase), the mass ratio of total amount of enzymes to starch (menzyme/mSt), the ratio of liquid volume to starch mass (VH2O/mSt), pH value of the reaction solution, enzymatic reaction temperature, and enzymatic reaction time. The hydrolysis ratio of each sample was also determined to investigate the effect of different reaction conditions on the hydrolysis degree. The results suggest that the porous starch has a more excellent adsorption capacity than the native starch, and may be expected to have wide potential applications in many fields.  相似文献   

9.
Mesoporous SBA-15 was synthesized under acidic condition at 40 °C with a non-ionic triblock copolymer (P123) as the template. The synthesis gel composition used was 1 SiO2:0.017 P123:2.9 HCl:202.6 H2O. Functionalization of SBA-15 with 3-aminopropyltriethoxysilane (APTES) by post-synthesis method was performed under reflux for 2 h. The mesoporous samples were characterized using Fourier transform infrared (FT-IR), nitrogen adsorption, transmission electron microscopy (TEM) and scanning electron microscopy (SEM). They were then utilized as supports for the immobilization of lipase to be subsequently used for the esterification of citronellol and lauric acid. Leaching and reusability tests were also conducted on the immobilized enzymes. Functionalization resulted in about 10% improvement in enzyme loading, leading to higher activity. The immobilized enzyme was also more stable to low pH and high temperature while showing better retention (up to 95%) of enzyme molecules. Immobilized lipase maintained 90% of its esterification activity in non-aqueous system even after 4 cycles of use. The improvements were associated with enhanced surface hydrophobicity, changes in pore shapes and stronger enzyme–support interactions with minimal effects to the enzymatic activity.  相似文献   

10.
Conductive polymer nanotubules of 1,2-diaminobenzene (1,2-DAB) were prepared using a porous polycarbonate membrane template, placed on a Pt foil and used to support the polymer, then, the electropolymerisation was performed by chronocoulometry. The obtained conductive polymer nanostructures were then placed on Pt electrode and used to support highly dispersed prussian blue (PB), which acts as the active component for H2O2 detection. The observed good stability of PB as catalyst of H2O2 was related to the presence of organic non-conventional conducting polymers in a composite nanostructured film. These nanostructured polymer/PB composite films were also characterised by scanning electron microscopy (SEM) and Raman spectroscopy. The non-conventional conducting polymer nanotubules/PB modified Pt electrodes were tested by cyclic voltammeter for stability at different pH values, then, by amperometry, for hydrogen peroxide, ascorbic acid, acetaminophen, uric acid and acetylcholine. Glucose oxidase (GOD), lactate oxidase (LOD), L-amino acid oxidase (L-AAOD), alcohol oxidase (AOD), glycerol-3-phosphate oxidase (GPO), lysine oxidase (LyOx), and choline oxidase (ChOx) were immobilised on PB layer supported on 1,2-diaminobenzene (1,2-DAB) nanotubules onto the Pt electrodes. Different strategies for enzyme immobilisation were performed and used. Analytical parameters such as reproducibility, interference rejection, response time, storage and operational stability of the sensors have been studied and optimised. Results provide a guide to design high sensitive, stable and interference-free biosensors. The glucose biosensors assembled with nanostructured poly(1,2-DAB) showed a detection limit of 5 x 10(-5) mol l(-1), a wide linearity range (5 x 10(-5) to 5 x 10(-3) mol l(-1)), a high selectivity, a stability of 3 months at 4 degrees C, and at least 4 weeks at room temperature. Similar analytical parameters and stability were also studied for L-(+)-lactic acid, L-leucine, ethanol, glycerol-3-phosphate, lysine, and choline biosensors.  相似文献   

11.
A mesoporous Li4Ti5O12/C nanocomposite is synthesized by a nanocasting technique using the porous carbon material CMK‐3 as a hard template. Modified CMK‐3 template is impregnated with Li4Ti5O12 precursor, followed by heat treatment at 750 °C for 6 h under N2. Li4Ti5O12 nanocrystals of up to several tens of nanometers are successfully synthesized in micrometer‐sized porous carbon foam to form a highly conductive network, as confirmed by field emission scanning electron microscopy, transmission electron microscopy, X‐ray diffraction, Raman spectroscopy, and nitrogen sorption isotherms. The composite is then evaluated as an anode material for lithium ion batteries. It exhibits greatly improved electrochemical performance compared with bulk Li4Ti5O12, and shows an excellent rate capability (73.4 mA h g?1 at 80 C) with significantly enhanced cycling performance (only 5.6% capacity loss after 1000 cycles at a high rate of 20 C). The greatly enhanced lithium storage properties of the mesoporous Li4Ti5O12/C nanocomposite may be attributed to the interpenetrating conductive carbon network, ordered mesoporous structure, and the small Li4Ti5O12 nanocrystallites that increase the ionic and electronic conduction throughout the electrode.  相似文献   

12.
In a sol-gel process, gum acacia inspired silica xerogels have been synthesized from tetraethylorthosilicate. Besides showing photoluminescence under ultraviolet excitation, the hybrid xerogels were very efficient in capturing mercury(II) from synthetic solution. To synthesize the optimum sample (in terms of Hg(II) uptake), different ratios of H(2)O:TEOS:EtOH were taken at fixed GA and catalyst concentrations where 4:1:1 ratio was found to be most favorable. Calcination in air further enhanced the mercury binding capacity of this sample. Optimum sample (H4) was obtained on calcination of the gel at 600°C. The hybrids have been structurally characterized using Infrared spectroscopy, X-ray diffraction, scanning electron microscopy, thermo gravimetric analysis, photoluminescence spectroscopy and Brunauer-Emmett-Teller analysis. In a preliminary batch adsorption experiment, H4 was evaluated to be highly efficient in the removal Hg(II) from synthetic aqueous solution.  相似文献   

13.
The aim of this study is to investigate the effects of differentiation of rabbit bone marrow mesenchymal stem cells (rBMSCs) into chondrocytes induced by transforming growth factor-beta1 (TCP-β1) composite poly-1actide-co-glycolic acid/nano-hydroxyapatite (PLLA/nano-HA) to the construction of biomimetic artificial cartilage in vitro. In the low-temperature extrusion preparation of PLLA/nano-HA composite porous scaffolds, rBMSCs were isolated and cultured to third generation in vitro, induced by TGF-β1-contained special inducing system into chondrocytes, 14 d later, identified by toluidine blue and type II collagen immunohistochemistry staining, and then the differential chondrocytes composite into the PLLA/nano-HA composite porous scaffolds, using scanning electron microscopy (SEM) to observe the growth conditions and cell attachment on the composite in the 7th,14th, and 21st day and to gather cells on composite in the 7th, 14th, and 21st day of cell. RT-PCR is used to detect the expression of aggrecan (Col2A1 in mRNA) and Western blot for detection of the expression of type II collagen of the attached cells. rBMSCs can differentiate into chondrocytes when induced, and the differentiation of chondrocytes secreting GAG by toluidine blue staining and type II collagen immunohistochemistry staining was positive; SEM confirm the cells distribution evenly, stretching well in composite. RT-PCR of aggrecan, Col2A1 in mRNA, and Western-blot of type II collagen expression in the differentiation of chondrocytes have different levels. Using TGF-β1 containing special inducing system induced rBMSCs into chondrocytes, then into compounds of PLLA/nano-HA composite porous scaffolds, and cell carrier complex proliferated well and secreted the chondrocyte-specific extracellular matrix stably, successfully constructing artificial bionic in vitro.  相似文献   

14.
Carbonic acid solution was used a medium for the free radical polymerization synthesis of poly( N-isopropylacrylamide) (p-nipam) thermoresponsive polymer as an alternative to conventional inert gas purging. It was found that p-nipam cross-linked gels or linear liquids and p-nipam/dextran magnetite composite gels could be very rapidly prepared and large gels recovered intact from open air vessels. A porogen was necessary for high thermoresponse, and dextran use resulted in microporous composite gels that gave optimal thermal response at weight ratio of p-nipam:dextran of 4:1. Up to 82% weight loss was rapidly obtained upon warming above the lower critical solution temperature. Analysis of products was made by transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR), and superconducting quantum interference device (SQUID). A simplified and efficient overall method for preparation of biomedical polymers is shown. A wider application of H2CO3 solution as a viable alternative media and to allow open air aqueous polymerizations of water soluble or hydrophilic monomers is indicated.  相似文献   

15.
An innovative nanocatalyst (KCC-1-nPr-Met) has been prepared from the covalent attachment of metformin on the channels and the pores of n-propyl amine functionalized dendritic fibrous nanosilica (DFNS) and used towards efficient, green, and high yield synthesis of tetrahydro-4H-chromenes derivatives by one-pot three-component reaction of aromatic aldehydes, malononitrile, and dimedone in H2O-EtOH at room temperature. The designed nanocatalyst has been characterized by energy dispersive X-ray spectroscopy (EDS), Fourier transform infrared spectroscopy (FT-IR), and adsorption/desorption analysis (BET) techniques. Also, field emission scanning electron microscopy (FE-SEM) was used to study the morphology of prepared nanocatalyst. The engineered nanocatalyst with uniform fibrous spheres has dendritic structure, high pore volume (0.35 cm3/g), and great surface area (178 m2/g). Hence, the specific dendritic structure of the prepared nanocatalyst not only improve the diffusion ability of the reactants and products, but also, increase the availability of dynamic sites in the pores and channels of the catalyst. According to the obtained results, a unique strategy was proposed towards the synthesis of important biologically active scaffolds in the presence of nontoxic and environmental friendly nanocatalyst and media. Milder reaction conditions (room temperature), shorter reaction times (5-30 minutes), excellent yields (92%-98%) of the products with higher purity, very simple workup procedure, and using of EtOH: H2O as a green solvent are the advantages of the presented work.  相似文献   

16.
氨基化二氧化硅颗粒固定木瓜蛋白酶研究   总被引:11,自引:2,他引:9  
采用正硅酸乙酯与N-(β-氨乙基)氨丙基三乙氧基硅烷在油包水形成的微胶囊中同步水解的方法,一步法制备了氨基化的二氧化硅颗粒,得到的颗粒粒径在0.3~0.5μm之间,平均大小为0.37μm, 氨基含量和颗粒大小可控,氨基含量高达56mmol/g。此颗粒经戊二醛处理后,采用共价法固定木瓜蛋白酶,固定化最适pH6.5,最佳给酶量为15mg/g载体,固定化酶的最适反应温度为70℃,最适反应pH为6.5,固定化酶热稳定性,pH耐受性,贮存稳定性都明显高于游离酶,表明此颗粒可作为一种优良的酶固定化载体。  相似文献   

17.
The purpose of this work was to manufacture the porous biomorphous composite using carbonized shapes cut from solid stem of solid iron bamboo, Dendrocalamus strictus, as a monolithic support. Bamboo carbonized at 800 degrees C was next infiltrated with liquid filler--furfuryl alcohol. After the polymerization and cross-linking of the filler, the shapes were carbonized again to obtain carbon/carbon composite. TGA method was used to investigate the thermal decomposition of the resulting composite as well as of the raw and carbonized bamboo. The ultrasonic measurements, optical microscopy observations, the adsorption of N(2) at -196 degrees C and mercury porosimetry were applied to characterize the structure of the investigated materials. The obtained composite was found to be highly porous (over 80%), thermo-resistant in inert atmosphere (up to 940 degrees C). It possessed stiff hierarchically ordered pore structure with elastic moduli >4 GPa along the stem, and >1 GPa perpendicularly to the stem. Furthermore, the layer of carbon from the polymer coated the support accurately and did not affect the shape of the monolithic pieces of carbonized bamboo. The resulting composite possessed also more uniform, mesoporous structure than the support.  相似文献   

18.
Summary One of the most important sets of model prebiotic experiments consists of reactions that synthesize complementary oligonucleotides from preformed templates under nonenzymatic conditions. Most of these experiments are conducted at 4°C using 0.01–0.1 M concentrations of activated nucleotide monomer and template (monomer equivalent). In an attempt to extend the conditions under which this type of reaction can occur, we have concentrated the reactants by freezing at –18°C, which is close to the NaCl–H2O eutectic at –21°C.The results from this set of experiments suggest that successful syntheses can occur with poly(C) concentrations as low at 5×10–4 M and 2MeImpG concentrations at 10–3 M. It was also anticipated that this mechanism might allow the previously unsuccessful poly(A)-directed synthesis of oligo(U)s to occur. However, no template effect was seen with the poly(A) and ImpU system. The failure of these conditions to allow template-directed synthesis of oligo(U)s supports the previously proposed idea that pyrimidines may not have been part of the earliest genetic material.Because of the low concentrations of monomer and template that would be expected from prebiotic syntheses, this lower temperature could be considered a more plausible geologic setting for template-directed synthesis than the standard reaction conditions.  相似文献   

19.
The objective of the present investigation was to fabricate composite colloidal particles consisting of a sacrificial, decomposable template of biodegradable nature covered with biocompatible polyelectrolyte multilayers using the layer-by-layer sequential adsorption technique. Poly-dl-lactic acid and poly(dl-lactic-co-glycolic acid) were chosen to design the microparticulate template, and a preliminary feasibility study was carried out with poly(styrene sulfonate sodium)-poly(allylamine hydrochloride) as shell components. The properties of both core-shell and hollow structures obtained by core dissolution were characterized by confocal laser scanning microscopy, microelectrophoresis, scanning force microscopy, and scanning electron microscopy. The concept was then extended to biocompatible polyelectrolytes as shell wall building blocks to deduce stable hollow capsules with tailored properties. Uniform, complete coating with oppositely charged polyelectrolyte pairs was achieved for all the combinations investigated. The results demonstrate that polyester microparticles could serve as viable alternative components to conventionally employed templates to derive hollow capsules with defined size, shape, and shell thickness. With all the components used for fabrication being biocompatible, these polyelectrolyte capsules may find interesting applications in the fields of biology, biochemistry, biotechnology, and drug delivery.  相似文献   

20.
Wen Q  Li C  Cai Z  Zhang W  Gao H  Chen L  Zeng G  Shu X  Zhao Y 《Bioresource technology》2011,102(2):942-947
The aim of this work is to evaluate the adsorption performances of activated carbon derived from sewage sludge (ACSS) for gaseous formaldehyde removal compared with three commercial activated carbons (CACs) using self-designing adsorption and distillation system. Formaldehyde desorption of the activated carbons for regeneration was also studied using thermogravimetric (TG) analysis. The porous structure and surface characteristics were studied using N2 adsorption and desorption isotherms, scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The results show that ACSS has excellent adsorption performance, which is overall superior to the CACs. Adsorption theory indicates that the ACSS outperforms the CACs due to its appropriate porous structure and surface chemistry characteristics for formaldehyde adsorption. The TG analysis of desorption shows that the optimum temperature to regenerate ACSS is 75 °C, which is affordable and economical for recycling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号