首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

The dolphin continues to capture the imagination of investigators because of its ability to echolocate. Echolocation is essentially a special extension and adaptation of the dolphin's hearing system, coupled with the animal's ability to generate special sounds. Humans have demonstrated the ability to judge room size based on reverberation from a voice, and some of the visually challenged use self-generated sounds to detect large reflective objects. Echolocation represents a highly refined acoustic ability on a broad acoustic sensory continuum. Research on the auditory and echolocation performance of cetaceans has moved forward slowly due to limited animal resources and the general high cost of maintaining these animals in a laboratory environment.

This paper reviews some of the more relevant psychoacoustic data on cetaceans, and concentrates on the bottlenose dolphin Tursiops truncatus. The information presented is not at all exhaustive. Early work with dolphins focused mainly on the animal's ability to use its echolocation system. Once echolocation capability was demonstrated using a blindfolded dolphin, the quest to understand dolphin sonar moved from qualifying the dolphin's echolocation skill to quantifying its basic capabilities.

Psychophysics, and more precisely psychoacoustics, provides the tools to study dolphin echolocation. The procedures, theories and even the apparatuses from the traditional psychoacoustics laboratory are adapted to the dolphin experimental setting to measure and analyze the sensory phenomenon of dolphin echolocation. Basic auditory phenomena such as the audiogram, the effects of masking, critical ratio and critical band, and interaural time and intensity discrimination capabilities have been explored in the dolphin. Additionally, special experiments investigating the psychoacoustics of the echolocation system in particular have been conducted.  相似文献   

2.
V. A. Ryabov 《Biophysics》2014,59(1):135-147
Two-channel recording of acoustic signals from two quasi-stationary dolphins has previously suggested that the dolphin echolocation system is more complex than discussed earlier, and includes at least four sonars. In the present work, two-channel recording of signals, analysis and interpretation of their functions were continued in terms of physical acoustics, signal theory and echolocation. The results indicate that the echolocation system of dolphins involves four organs to produce probing signals of five different types, which implies different mechanisms of their processing by the dolphin hearing; its operation corresponds to as many as six varieties of sonar systems. The results are of importance for studying the echolocation system of Odontoceti and for improving sonars and radars.  相似文献   

3.
1982年4月—1983年4月对一头白暨豚进行了训练,目标识别实验的结果表明,白暨豚愿意满足训练员的要求,且记忆力较强。  相似文献   

4.
Echolocating bats of the genus Rousettus produce click sonar signals, using their tongue (lingual echolocation). These signals are often considered rudimentary and are believed to enable only crude performance. However, the main argument supporting this belief, namely the click’s reported long duration, was recently shown to be an artifact. In fact, the sonar clicks of Rousettus bats are extremely short, ~50–100 μs, similar to dolphin vocalizations. Here, we present a comparison between the sonar systems of the ‘model species’ of laryngeal echolocation, the big brown bat (Eptesicus fuscus), and that of lingual echolocation, the Egyptian fruit bat (Rousettus aegyptiacus). We show experimentally that in tasks, such as accurate landing or detection of medium-sized objects, click-based echolocation enables performance similar to laryngeal echolocators. Further, we describe a sophisticated behavioral strategy for biosonar beam steering in clicking bats. Finally, theoretical analyses of the signal design—focusing on their autocorrelations and wideband ambiguity functions—predict that in some aspects, such as target ranging and Doppler-tolerance, click-based echolocation might outperform laryngeal echolocation. Therefore, we suggest that click-based echolocation in bats should be regarded as a viable echolocation strategy, which is in fact similar to the biosonar used by most echolocating animals, including whales and dolphins.  相似文献   

5.
There is increasing concern that human-produced ocean noise is adversely affecting marine mammals, as several recent cetacean mass strandings may have been caused by animals'' interactions with naval ‘mid-frequency’ sonar. However, it has yet to be empirically demonstrated how sonar could induce these strandings or cause physiological effects. In controlled experimental studies, we show that mid-frequency sonar can induce temporary hearing loss in a bottlenose dolphin (Tursiops truncatus). Mild-behavioural alterations were also associated with the exposures. The auditory effects were induced only by repeated exposures to intense sonar pings with total sound exposure levels of 214 dB re: 1 μPa2 s. Data support an increasing energy model to predict temporary noise-induced hearing loss and indicate that odontocete noise exposure effects bear trends similar to terrestrial mammals. Thus, sonar can induce physiological and behavioural effects in at least one species of odontocete; however, exposures must be of prolonged, high sound exposures levels to generate these effects.  相似文献   

6.
Echolocating animals adjust the transmit intensity and receive sensitivity of their sonar in order to regulate the sensation level of their echoes; this process is often termed automatic gain control. Gain control is considered not to be under the animal''s cognitive control, but previous investigations studied animals ensonifying targets or hydrophone arrays at predictable distances. To test whether animals maintain gain control at a fixed level in uncertain conditions, we measured changes in signal intensity for a bottlenose dolphin (Tursiops truncatus) detecting a target at three target distances (2.5, 4 and 7 m) in two types of sessions: predictable and unpredictable. Predictable sessions presented the target at a constant distance; unpredictable sessions moved the target randomly between the three target positions. In the predictable sessions the dolphin demonstrated intensity distance compensation, increasing the emitted click intensity as the target distance increased. Additionally, as trials within sessions progressed, the animal adjusted its click intensity even from the first click in a click train, which is consistent with the animal expecting a target at a certain range. In the unpredictable sessions there was no significant difference of intensity with target distance until after the 7th click in a click train. Together, these results demonstrate that the bottlenose dolphin uses learning and expectation for sonar gain control.  相似文献   

7.
The development of a unique dolphin biomimetic sonar produced data that were used to study signal processing methods for object identification. Echoes from four metallic objects proud on the bottom, and a substrate-only condition, were generated by bottlenose dolphins trained to ensonify the targets in very shallow water. Using the two-element ('binaural') receive array, object echo spectra were collected and submitted for identification to four neural network architectures. Identification accuracy was evaluated over two receive array configurations, and five signal processing schemes. The four neural networks included backpropagation, learning vector quantization, genetic learning and probabilistic network architectures. The processing schemes included four methods that capitalized on the binaural data, plus a monaural benchmark process. All the schemes resulted in above-chance identification accuracy when applied to learning vector quantization and backpropagation. Beam-forming or concatenation of spectra from both receive elements outperformed the monaural benchmark, with higher sensitivity and lower bias. Ultimately, best object identification performance was achieved by the learning vector quantization network supplied with beam-formed data. The advantages of multi-element signal processing for object identification are clearly demonstrated in this development of a first-ever dolphin biomimetic sonar.  相似文献   

8.
cDNAs of human and bovine retinal rod Na+-Ca2++K+ exchanger (NCKX1) have previously been cloned, but potassium-dependent Na-Ca exchange activity upon heterologous expression has not been demonstrated. We have cloned NCKX1 cDNA from dolphin, examined function upon transfection in HEK293 cells, and compared the dolphin sequence encoded by the cDNA with those of human and bovine. The dolphin NCKX1 cDNA encodes 1013 amino acid residues. Comparison to bovine and human NCKX1 revealed strong conservation in the transmembrane domains (>95%), but relatively low conservation in the large extracellular ( approximately 50%) and cytosolic (<50%) domains. The dolphin cytosolic domain differs from the bovine sequence by the absence of a stretch of 114 amino acids. HEK293 cells transfected with dolphin NCKX1 cDNA showed K+-dependent Na-Ca exchange in >95% of the experiments, whereas transfection with bovine NCKX1 yielded no function. The bovine NCKX1 phenotype was imparted on dolphin NCKX1 when the dolphin cytosolic loop was replaced by that from bovine. Conversely, deletion of 114 amino acids from the bovine sequence to match the dolphin sequence resulted in a mutant bovine NCKX1 which performed K+-dependent Na-Ca exchange. These results suggest that domains within the large cytosolic loop of NCKX1 control functional activity when expressed in heterologous systems.  相似文献   

9.
In the present study some qualitative and quantitative features of the reticular formation of the medulla oblongata, pons and midbrain have been elucidated by cytoarchitectonic methods in the dolphin (Tursiops truncatus). The studies have demonstrated that similar to land mammalia, the dolphin has a reticular formation made up of spatially open cell groups lying in the deepest parts of the brain stem. Cytoarchitectonically the component parts of the reticular formation show a number of peculiarities enabling us to distinguish separate nuclei. In the dolphin peculiar architectonics have been observed in the nucleus gigantocellularis medullae oblongatae, nucleus papillioformis or the nucleus reticularis tegmenti Bechterewi and the nucleus centralis superior medialis seu ventralis. Fairly poor in cells are the nucleus centralis caudalis pontis and the nucleus centralis oralis pontis. We failed to single out as autonomous nuclei cell groups corresponding to the nucleus funiculi lateralis and the nucleus paratrochlearis of the land mammalia. The size and density of cells in nuclei have a number of peculiarities. The analysis of the ratios of the brainstem volume to that of reticular structures has shown them to be the smallest in the dolphin as compared with land mammals. The smaller share held by the brain-stem reticular formation and its cytoarchitectonic features can be associated with the functional properties resulting from the greater specialization of some of brain-stem systems (e.g. auditory, vestibular, extrapyramidal etc.) in the dolphin in comparison with land mammals.  相似文献   

10.
Several authors suggest that dolphins use information obtained by eavesdropping on echoes from sonar signals of conspecifics, but there is little evidence that this strategy is used by dolphins in the wild. Travelling rough-toothed dolphins (Steno bredanensis) either exhibit asynchronous movements or an extremely synchronized swimming behaviour in tight formations, which we expect to facilitate eavesdropping. Therefore, we determined, whether either one or more dolphins were echolocating in subgroups that were travelling with asynchronous and synchronized movements. Since, the number of recording sequences in which more than one animal produced sonar signals was significantly lower during synchronized travel, we conclude that the other members of a subgroup might get information on targets ahead by eavesdropping. Synchronized swimming in tight formations might be an energetic adaptation for travelling in a pelagic dolphin species that facilitates eavesdropping.  相似文献   

11.
Bioinspired engineering based on biosonar systems in nature is reviewed and discussed in terms of the merits of different approaches and their results: biosonar systems are attractive technological paragons because of their capabilities, built-in task-specific knowledge, intelligent system integration and diversity. Insights from the diverse set of sensing tasks solved by bats are relevant to a wide range of application areas such as sonar, biomedical ultrasound, non-destructive testing, sensors for autonomous systems and wireless communication. Challenges in the design of bioinspired sonar systems are posed by transducer performance, actuation for sensor mobility, design, actuation and integration of beamforming baffle shapes, echo encoding for signal processing, estimation algorithms and their implementations, as well as system integration and feedback control. The discussed examples of experimental systems have capabilities that include localization and tracking using binaural and multiple-band hearing as well as self-generated dynamic cues, classification of small deterministic and large random targets, beamforming with bioinspired baffle shapes, neuromorphic spike processing, artifact rejection in sonar maps and passing range estimation. In future research, bioinspired engineering could capitalize on some of its strengths to serve as a model system for basic automation methodologies for the bioinspired engineering process.  相似文献   

12.
BOOK REVIEWS     
ABSTRACT

This paper provides our views on the areas of cetacean bioacoustics that are in the greatest need of study over the next several years. In doing this, we ask a number of questions we see as important to developing a better understanding of cetacean bioacoustics. The topics we will cover are: Auditory Capabilities, including hearing sensitivity, pathways of sound to the ear, intraspecific variation in hearing capabilities, and the effects of intense sound on hearing capabilities; Echolocation, including the information-bearing parameters exploited by dolphin sonar systems to discriminate and identify objects, and the functional characteristics of the internal representation generated by reflections from ensonified objects; and Acoustic Communication, including the nature of the cetacean sound generation mechanism, the behaviors associated with mysticete communication sounds, and the range over which mysticetes communicate. While other investigators may not fully agree with our suggestions as to which questions are most important for future studies of cetacean bioacoustics, it is clear that a considerable effort must still be made in order that we can better understand the bioacoustics and general behavior of these animals.  相似文献   

13.
《Anthrozo?s》2013,26(1):44-53
ABSTRACT

The popular demand for encounters with dolphins has resulted in organized encounters around the world involving in-water interactions with both captive and free-ranging dolphins. Many concerns about these interactions have been raised with regard to the well-being of human and dolphin participants (e.g. Capaldo 1989; Iannuzzi and Rowan 1991). In this paper we (a) review existing information on human/dolphin interactions, (b) provide a qualitative comparison of such interactions in the captive and in the wild with the same species of dolphin (Tursiops truncatus), and (c) make suggestions regarding future research needs regarding the wellbeing of dolphins and humans in interactive programs.

This study found that the free-ranging dolphin/human interactions consisted primarily of basic elements of intraspecific interactions among free-ranging dolphins. Interactive dolphin behaviors in the captive environment consisted primarily of actions that had been signaled and then reinforced by humans. Potential indicators of disturbance in the dolphins were observed in both contexts, but most frequently in the captive environment. We conclude that future research is needed to assess the risks to human and dolphin participants during in-water encounters.  相似文献   

14.
Two contrasting results emerge from comparisons of the social systems of several odontocetes with terrestrial mammals. Researchers have identified remarkable convergence in prominent features of the social systems of odontocetes such as the sperm whale and bottlenose dolphin with a few well-known terrestrial mammals such as the elephant and chimpanzee. In contrast, studies on killer whales and Baird's beaked whale reveal novel social solutions to aquatic living. The combination of convergent and novel features in odontocete social systems promise a more general understanding of the ecological determinants of social systems in both terrestrial and aquatic habitats, as well as the relationship between relative brain size and social evolution.  相似文献   

15.
厦门海域的中华白海豚是一个受威胁的种群。以往有关该种群的调查范围主要集中在厦门以及邻近的南部漳州海域。为了获得厦门岛东部海域(包括晋江围头湾、小嶝岛以及大嶝岛部分水域)白海豚的分布和数量等信息,本文于2013年6—8月对该水域进行了船基样线法调查和照相识别研究。调查期间共目击到白海豚26群,照相识别白海豚个体27头。所有照相识别的白海豚个体均与厦门中华白海豚个体识别数据库中的个体匹配,表明厦门中华白海豚的分布区至少向东延伸至围头湾。本文白海豚遇见率为5.8群/100km和24.8头/100km,均要高于以往在厦门水域的调查结果,表明大嶝岛—围头湾水域是厦门中华白海豚的重要栖息地之一,值得优先保护和管理。  相似文献   

16.
Molecular characterization of a cloned dolphin mitochondrial genome   总被引:11,自引:0,他引:11  
Summary DNA clones have been isolated that span the complete mitochondrial (mt) genome of the dolphin,Cephalorhynchus commersonii. Hybridization experiments with purified primate mtDNA probes have established that there is close resemblance in the general organization of the dolphin mt genome and the terrestrial mammalian mt genomes. Sequences covering 2381 bp of the dolphin mt genome from the major noncoding region, three tRNA genes, and parts of the genes encoding cytochrome b, NADH dehydrogenase subunit 3 (ND3), and 16S rRNA have been compared with corresponding regions from other mammalian genomes. There is a general tendency throughout the sequenced regions for greater similarity between dolphin and bovine mt genomes than between dolphin and rodent or human mt genomes.  相似文献   

17.
Hector's dolphins (Cephalorhynchus hectori) have a simple vocal repertoire, consisting almost entirely of ultrasonic clicks. They produce no whistles, and very few audible sounds. To examine acoustic communication in this species I analysed the relationship between click types and behaviour. The proportion of complex click types was greater in large groups, suggesting that these sounds have social significance. Clicks having 2 peaks in their time envelope and two frequency peaks were strongly associated with behaviours indicative of feeding. High pulse rate sounds, in which the repetition rate of ultrasonic clicks was audible as a “cry”, were most strongly associated with aerial behaviours. These data suggest that echo-location is not the sole function of Hector's dolphin clicks, and that echo-location and communication are likely to be closely linked. I hypothesize that dolphins may have the ability to gather information from the echoes of each other's sonar pulses. This may reduce the need for a large number of vocal signals, and may explain the apparent simplicity of the acoustic repertoires of some odontocetes.  相似文献   

18.
Tactile exchanges involving the pectoral fin have been documented in a variety of dolphin species. Several functions (e.g., social, hygienic) have been offered as possible explanations for when and why dolphins exchange pectoral fin contacts. In this study, we compared pectoral fin contact between dolphin dyads from three distinct dolphin populations: two groups of wild dolphins; Atlantic spotted dolphins (Stenella frontalis) from The Bahamas and Indo-Pacific bottlenose dolphins (Tursiops aduncus) from around Mikura Island, Japan; and one group of captive bottlenose dolphins (Tursiops truncatus) residing at the Roatan Institute for Marine Sciences, Anthony's Key Resort. A number of similarities were observed between the captive and wild groups, including; rates of pectoral fin contact, which dolphin initiated contact, posture preference, and same-sex rubbing partner preference. Unlike their wild counterparts, however, dolphins in the captive study group engaged in petting and rubbing at equal rates, females were more likely to contact males, males assumed the various rubbing roles more frequently than females, and calves and juveniles were more likely to be involved in pectoral fin contact exchanges. These results suggest that some aspects of pectoral fin contact behaviour might be common to many dolphin species, whereas other aspects could be species specific, or could be the result of differing environmental and social conditions.  相似文献   

19.
Shifts in habitat use and distribution patterns in dolphins are often concerns that can result from habitat degradation. We investigated how potential changes to a habitat from human activity may alter dolphin distributions within Lingding Bay in the Pearl River Estuary, China, by studying the relationship between fish choruses, vessel presence and Indo‐Pacific humpback dolphin (Sousa chinensis) detection rates. Analyses revealed temporal and spatial variation within fish choruses, vessel presence and dolphin detection rates. After accounting for any temporal autocorrelation, correlations between fish choruses and dolphin detection rates were also found; however, no relationship between fish choruses and vessel presence or dolphin detection rates and vessel presence were observed. Furthermore, fewer dolphins were detected at sites where fish activity was less intense. Thus fish activity, rather than vessels, may be a key factor influencing the distribution of the dolphins within the estuary. These findings emphasize the risk of potential shifts in habitat use for Indo‐Pacific humpback dolphins due to detrimental changes to prey availability and dolphin feeding grounds from human activity, such as overfishing and coastal developments, within the estuary. This is a critical conservation issue for this dolphin population that is facing intense anthropogenic pressure.  相似文献   

20.
ABSTRACT

A bottlenose dolphin was tested on its ability to echoically discriminate horizontal angular differences between two arrays of vertical, air-filled, PVC rods. The blindfolded dolphin was required to station in a submerged, vertically-oriented hoop, 2 radial metres from the stimuli, and indicate whether an array with four rods (S+) was to the left or the right of an array with two rods (S-), by pressing a corresponding paddle. The angular separation between the rods within each array (θw) was maintained at 2 degrees but the angular separation between the two arrays (θb) was varied to produce angular differences (δθ = θbw)ranging from 0.25 degrees to 4 degrees. A modified method of constant stimuli was used to test for angular discrimination ability, and yielded a psychometric function having a 75% correct threshold of 1.6 degrees. This threshold fell between the passive listening minimum audible angle thresholds of 0.9 degrees for click signals and 2.1 degrees for a pure tone signal (Renaud & Popper 1975). Analyses of response times, number of clicks and inter-click intervals failed to detect any significant adaptive behaviour occurring as the task became more difficult. These results help to define angular resolution capabilities of dolphin sonar that may play an important role in representing spatial information in the dolphin's environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号