首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An experimental study was carried out on asymmetrical abdominal aortic aneurysm (AAA) to analyse the physiological flows involved. Velocity measurements were performed using particle image velocimetry. Resting and exercise flow rates were investigated in models with rigid and compliant walls to assess the parameters affecting the flow behaviour. The secondary flow patterns, and especially the evolution of the vortices within the AAA, were found to be highly dependent on both the flow waveforms and the wall behaviour. Vortices impacts on the distal walls of the AAA occur in the compliant model and can increase the local pressure on the AAA walls and thus increase the wall stresses; AAA wall stresses are one of the most important factors contributing to ruptured aneurysm.  相似文献   

2.
The correlation between skin structure and hydrodynamic design of the dorsal fin of the harbor porpoise (Phocoena phocoena) was examined. For the study of fin morphology and geometry, a scheme of sampling representing a two-parameter mesh on the fin surface was used. At each data point the thickness of the epidermis, papillary and subpapillary layers of the dermis, the ligamentous layer of the fin, as well as the angle formed by the direction of dermal ridges and the fin root chord were measured. On the basis of fin cross-sections the three-dimensional surface models of the fin in a 1 : 1 scale were created with a CAD program. The shape of the model was evaluated by the wing and hydrofoil parameters (angle of leading edge sweep, leading edge radius, maximum thickness of the fin cross-section, and position of maximum thickness from the leading edge). Hydrodynamic performance of the fin cross-sections was studied with a CFD program. Regional variability of the parameters of morphology was compared with spanwise variability of the parameters of cross-sectional geometry. It was found that skin structure parameters correlate with the hydrodynamically relevant parameters of the fin and fin cross-sections. Regularities of skin structure of the harbor porpoise dorsal fin are considered indirect evidence of the adaptation of porpoise skin to the fin flow.  相似文献   

3.
In this paper, we investigate pulsatile flow through a constricted tube with the aim of assessing the effect of stenosis morphology on hemodynamic parameters. The fluid-solid interaction of pulsatile flow through a compliant tube with elastic walls was simulated using an arbitrary Lagrangian-Eulerian (ALE) finite-element method. We consider blood flow through various mild stenoses of 25.8% severity in diameter with trapezoidal and bell-like morphologies at a fixed Womersley number of 7.75. The results show that the distribution of the time-averaged wall shear stress (TAWSS), which is the main factor affecting the hemodynamic parameters, strongly depends on the axial stretch of the stenosis; elongation of the stenotic region increases by 41.1% the maximum TAWSS for stenoses of trapezoidal morphology whereas the maximum TAWSS decreases by 14.8% for the corresponding stenoses of bell-like morphology. The present findings indicate that risk factors due to atherosclerosis may vary in a complicated manner as an atheromatous plaque gradually builds up and morphs with time.  相似文献   

4.
Initial measurements of the time-varying wall shear rate at two sites in a compliant cast of a human aortic bifurcation are presented. The shear rates were derived from flow velocities measured by laser Doppler velocimetry (LDV) near the moving walls of the cast. To derive these shear rate values, the distance from the velocimeter sampling volume to the cast wall must be known. The time variation of this distance was obtained from LDV measurements of the velocity of the wall itself.  相似文献   

5.
Rigid and compliant casts of a human aortic bifurcation were subjected to physiologically realistic pulsatile fluid flows. At a number of sites near the wall in the approximate median plane of the bifurcation of these models, fluid velocity was measured with a laser Doppler velocimeter, and wall motion (in the case of the compliant cast) was determined with a Reticon linescan camera. The velocity and wall motion data were combined to estimate the instantaneous shear rates at the cast wall. Analysis showed that at the outer walls the cast compliance reduced shear rates, while at the walls of the flow divider the shear rate was increased.  相似文献   

6.
Hemodynamic conditions in large arteries are significantly affected by the interaction of the pulsatile blood flow with the distensible arterial wall. A numerical procedure for solving the fluid–structure interaction problem encountered in cardiovascular flows is presented. We consider a patient-specific carotid bifurcation geometry, obtained from 3D reconstruction of in vivo acquired tomography images, which yields a geometrical representation of the artery corresponding to its pressurized state. To recover the geometry of the artery in its zero-pressure state which is required for a fluid–structure interaction simulation we utilize inverse finite elastostatics. Time-dependent flow simulations with in vivo measured inflow volume flow rate in the 3D undeformed artery are performed through the finite element method. The coupled-momentum method for fluid–structure interaction is adopted to incorporate the influence of wall compliance in the numerical computation of the time varying flow domain. To demonstrate the importance in recovering the zero-pressure state of the artery in hemodynamic simulations we compute the time varying flow field with compliant walls for the original and the zero-pressure state corrected geometric configurations of the carotid bifurcation. The most important resulting effects in the hemodynamic environment are evaluated. Our results show a significant change in the wall shear stress distribution and the spatiotemporal extent of the recirculation regions.  相似文献   

7.
There is a definite relation between the state of dolphin's health and the abundance of bacterial associations developing on the skin surface around the dorsal fin. The disease was accompanied by an increase in bacterium amount more than fourfold due to the enhancement of staphylococcus and pseudomonad number. The development of dystrophy in the animal resulted in a threefold decrease in bacterium number. Pseudomonas aeruginosa dominated in this case. In the vaginal mucose of female, the development of bacteria had an oscillatory character and was correlated with the dynamics of leukocyte number against the background of morphologically diverse epithelial cells discharged in different periods of observation. Periods of the abundant bacterium development were connected with the cyclic recurrence of sexual (estrous) processes in the female organism.  相似文献   

8.
Degradation of Streptococcal Cell Wall Antigens In Vivo   总被引:26,自引:0,他引:26       下载免费PDF全文
Specific chemical modification of group A polysaccharide antigen to the A-variant structure was demonstrated in the lymphoid organs of mice by autoradiography by use of radioantibodies specific for these structures. Both antigenic moieties persisted and were still discerned 10 weeks after injection of the group A cell wall. In rabbit skin, the group A specificity was altered after a prolonged period. Unlike the situation for the mouse, polysaccharide A was not converted to A-variant structure, but another specificity common to both polysaccharides persisted at the site of injection. Mucopeptide, separated from the polysaccharide of group A cell walls, was eliminated from the site of injection in rabbit skin between 4 and 8 hr after injection. Group D streptococcal cell walls were also rapidly eliminated from tissue, and were no longer detectable 8 hr after injection into rabbit skin or 24 hr after injection into mice. The rapid degradation of these structures was correlated with their susceptibility to lysozyme in vitro and was in contrast to the prolonged persistence of group A cell walls, which were completely resistant to egg white lysozyme. This persistence in tissue correlated with the capacity of group A cell wall fragments to induce a chronic inflammatory process, whereas the isolated mucopeptide or group D cell walls produced only an acute necrotoxic reaction.  相似文献   

9.
With circulatory pathology, patient-specific simulation of hemodynamics is required to minimize invasiveness for diagnosis, treatment planning, and followup. We investigated the advantages of a smart combination of often already known hemodynamic principles. The CircAdapt model was designed to simulate beat-to-beat dynamics of the four-chamber heart with systemic and pulmonary circulation while incorporating a realistic relation between pressure-volume load and tissue mechanics and adaptation of tissues to mechanical load. Adaptation was modeled by rules, where a locally sensed signal results in a local action of the tissue. The applied rules were as follows: For blood vessel walls, 1) flow shear stress dilates the wall and 2) tensile stress thickens the wall; for myocardial tissue, 3) strain dilates the wall material, 4) larger maximum sarcomere length increases contractility, and 5) contractility increases wall mass. The circulation was composed of active and passive compliances and inertias. A realistic circulation developed by self-structuring through adaptation provided mean levels of systemic pressure and flow. Ability to simulate a wide variety of patient-specific circumstances was demonstrated by application of the same adaptation rules to the conditions of fetal circulation followed by a switch to the newborn circulation around birth. It was concluded that a few adaptation rules, directed to normalize mechanical load of the tissue, were sufficient to develop and maintain a realistic circulation automatically. Adaptation rules appear to be the key to reduce dramatically the number of input parameters for simulating circulation dynamics. The model may be used to simulate circulation pathology and to predict effects of treatment.  相似文献   

10.
A high-fidelity computational model using a 3D immersed boundary method is used to study platelet dynamics in whole blood. We focus on the 3D effects of the platelet-red blood cell (RBC) interaction on platelet margination and near-wall dynamics in a shear flow. We find that the RBC distribution in whole blood becomes naturally anisotropic and creates local clusters and cavities. A platelet can enter a cavity and use it as an express lane for a fast margination toward the wall. Once near the wall, the 3D nature of the platelet-RBC interaction results in a significant platelet movement in the transverse (vorticity) direction and leads to anisotropic platelet diffusion within the RBC-depleted zone or cell-free layer (CFL). We find that the anisotropy in platelet motion further leads to the formation of platelet clusters, even in the absence of any platelet-platelet adhesion. The transverse motion, and the size and number of the platelet clusters are observed to increase with decreasing CFL thickness. The 3D nature of the platelet-RBC collision also induces fluctuations in off-shear plane orientation and, hence, a rotational diffusion of the platelets. Although most marginated platelets are observed to tumble just outside the RBC-rich zone, platelets further inside the CFL are observed to flow with an intermittent dynamics that alters between sliding and tumbling, as a result of the off-shear plane rotational diffusion, bringing them even closer to the wall. To our knowledge, these new findings are based on the fundamentally 3D nature of the platelet-RBC interaction, and they underscore the importance of using cellular-scale 3D models of whole blood to understand platelet margination and near-wall platelet dynamics.  相似文献   

11.
Articular cartilage is known to be anisotropic and inhomogeneous because of its microstructure. In particular, its elastic properties are influenced by the arrangement of the collagen fibres, which are orthogonal to the bone-cartilage interface in the deep zone, randomly oriented in the middle zone, and parallel to the surface in the superficial zone. In past studies, cartilage permeability has been related directly to the orientation of the glycosaminoglycan chains attached to the proteoglycans which constitute the tissue matrix. These studies predicted permeability to be isotropic in the undeformed configuration, and anisotropic under compression. They neglected tissue anisotropy caused by the collagen network. However, magnetic resonance studies suggest that fluid flow is "directed" by collagen fibres in biological tissues. Therefore, the aim of this study was to express the permeability of cartilage accounting for the microstructural anisotropy and inhomogeneity caused by the collagen fibres. Permeability is predicted to be anisotropic and inhomogeneous, independent of the state of strain, which is consistent with the morphology of the tissue. Looking at the local anisotropy of permeability, we may infer that the arrangement of the collagen fibre network plays an important role in directing fluid flow to optimise tissue functioning.  相似文献   

12.

Background  

Molecular probes are required to detect cell wall polymers in-situ to aid understanding of their cell biology and several studies have shown that cell wall epitopes have restricted occurrences across sections of plant organs indicating that cell wall structure is highly developmentally regulated. Xyloglucan is the major hemicellulose or cross-linking glycan of the primary cell walls of dicotyledons although little is known of its occurrence or functions in relation to cell development and cell wall microstructure.  相似文献   

13.
Nonuniformity of myocardial systolic and diastolic performance in the normal left ventricle has been recognized by a number of investigators. Lack of homogeneity in diastolic properties might be caused by or related to differences in the distensibility of different regions of the left ventricular (LV) wall. Thus, we compared the end-diastolic transmural pressure-strain relations in both the anterior and posterior LV walls in seven anesthetized dogs during two interventions (pulmonary artery constriction and aortic constriction). Transmural pressure was defined as the difference between LV intracavitary pressure and local pericardial pressure. LV pressure was measured using a micromanometer; pericardial pressures over the LV anterior and posterior walls were measured with balloon transducers. Circumferentially oriented pairs of sonomicrometer crystals were implanted in the midwall of the anterior and posterior walls of the LV to measure segment lengths. Strains were calculated as (L-L0)/L0, where L was the instantaneous segment length and L0 was the segment length when transmural pressure was zero. The pattern of end-diastolic transmural pressure--strain relations was similar in all dogs. The change in strain in the posterior wall was always greater than that in the anterior wall. Opening the pericardium did not affect the difference in distensibility of the anterior and posterior walls. The results suggest that the posterior wall is more compliant than the anterior wall (that is, for a given difference in transmural pressure, the local segment length change of the posterior wall was greater). This seems consistent with other observations, which suggest that the posterior wall might make a greater contribution to diastolic filling.  相似文献   

14.
In this work, we address the simulation of three-dimensional arterial blood flow and its effect on the stress state of arterial walls. The novel contribution is the unprecedented combination of several modeling techniques to account for (1) the fact that known configurations for the arterial wall are in a preloaded state, (2) the compliance of the vessel segments, (3) proper boundary data over the non-physical interfaces resulting from the isolation of an arterial district from the rest of the arterial tree, (4) the presence of surrounding tissues in which the vessel is embedded and (5) residual stress state due to pre-stretch. Firstly, we formulate both the forward mechanical problem when the reference (zero-load) configuration is assumed to be known and, the preload problem arising when the known domain is a configuration at equilibrium with a certain load state (typically due to internal pressure and tethering forces). Then, two additional complexities are faced: the fluid–structure interaction problem that follows when the compliant vessels are coupled with the blood flow, and the introduction of non-physical boundaries coming from the artificial isolation of the arterial district from the original vessel. This, in turn, posses the problem of coupling dimensionally heterogeneous models to incorporate the effect of upstream and downstream systemic impedances. Additionally, a viscoelastic support on the external surface of the vessel is also incorporated. Two examples are presented to quantify in a physiologically consistent scenario the differences in simulation results when either considering or not the preload state of arterial walls. These computational simulations shed light on the validity of simplifying hypotheses in most hemodynamic models.  相似文献   

15.
16.
Sperm are propelled by an actively beating tail, and display a wide variety of swimming patterns. When confined between two parallel walls, sperm swim either in circles or on curvilinear trajectories close to the walls. We employ mesoscale hydrodynamics simulations in combination with a mechanical sperm model to study the swimming behavior near walls. The simulations show that sperm become captured at the wall due to the hydrodynamic flow fields which are generated by the flagellar beat. The circular trajectories are determined by the chiral asymmetry of the sperm shape. For strong (weak) chirality, sperm swim in tight (wide) circles, with the beating plane of the flagellum oriented perpendicular (parallel) to the wall. For comparison, we also perform simulations based on a local anisotropic friction of the flagellum. In this resistive force approximation, surface adhesion and circular swimming patterns are obtained as well. However, the adhesion mechanism is now due to steric repulsion, and the orientation of the beating plane is different. Our model provides a theoretical framework that explains several distinct swimming behaviors of sperm near and far from a wall. Moreover, the model suggests a mechanism by which sperm navigate in a chemical gradient via a change of their shape.  相似文献   

17.
Arterial walls typically have a heterogeneous structure with three different layers (intima, media, and adventitia). Each layer can be modeled as a fiber-reinforced material with two families of relatively stiff collagenous fibers symmetrically arranged within an isotropic soft ground matrix. In this paper, we present two different modeling approaches, the embedded fiber (EF) approach and the angular integration (AI) approach, to simulate the anisotropic behavior of individual arterial wall layers involving layer-specific data. The EF approach directly incorporates the microscopic arrangement of fibers that are synthetically generated from a random walk algorithm and captures material anisotropy at the element level of the finite element formulation. The AI approach smears fibers in the ground matrix and treats the material as homogeneous, with material anisotropy introduced at the constitutive level by enhancing the isotropic strain energy with two anisotropic terms. Both approaches include the influence of fiber dispersion introduced by fiber angular distribution (departure of individual fibers from the mean orientation) and take into consideration the dispersion caused by fiber waviness, which has not been previously considered. By comparing the numerical results with the published experimental data of different layers of a human aorta, we show that by using histological data both approaches can successfully capture the anisotropic behavior of individual arterial wall layers. Furthermore, through a comprehensive parametric study, we establish the connections between the AI phenomenological material parameters and the EF parameters having straightforward physical or geometrical interpretations. This study provides valuable insight for the calibration of phenomenological parameters used in the homogenized modeling based on the fiber microscopic arrangement. Moreover, it facilitates a better understanding of individual arterial wall layers, which will eventually advance the study of the structure–function relationship of arterial walls as a whole.  相似文献   

18.
Obstructive sleep apnoea syndrome (OSAS) is a breathing disorder with a multifactorial etiology. The respiratory epithelium is lined with a thin layer of airway surface liquid preventing interactions between the airflow and epithelium. The effect of the liquid lining in OSAS pathogenesis remains poorly understood despite clinical research. Previous studies have shown that the physical properties of the airway surface liquid or altered stimulation of the airway mechanoreceptors could alleviate or intensify OSAS; however, these studies do not provide a clear physical interpretation. To study the forces transmitted from the airflow to the liquid-lined compliant wall and to discuss the effects of the airway surface liquid properties on the stimulation of the mechanoreceptors, a novel and simplified experimental system mimicking the upper airway fundamental characteristics (i.e., liquid-lined compliant wall and complex unsteady airflow features) was constructed. The fluctuating force on the compliant wall was reduced through a damping mechanism when the liquid film thickness and/or the viscosity were increased. Conversely, the liquid film damping was reduced when the surface tension decreased. Based on the experimental data, empirical correlations were developed to predict the damping potential of the liquid film. In the future, this will enable us to extend the existing computational fluid–structure interaction simulations of airflow in the human upper airway by incorporating the airway surface liquid effect without adopting two-phase flow interface tracking methods. Furthermore, the experimental system developed in this study could be used to investigate the fundamental principles of the complex once/twice-coupled physical phenomena.  相似文献   

19.
Sexing cetaceans usually requires time-consuming observation, or genetic sexing via biopsy sampling or skin swabbing. We developed a method to determine the sex of bottlenose dolphins ( Tursiops sp.) in Doubtful Sound, Fiordland, using laser-metric dorsal fin photographs. From dorsal fin photographs of 43 bottlenose dolphins of known sex (25 females, 18 males) we analyzed the shape, proportion of fin area covered in scarring and epidermal lesions, and the number of fin nicks. Males had significantly higher rates of scarring ( P < 0.001) and dorsal fin nicks ( P < 0.01) than females, whereas the severity of epidermal lesions was higher in females ( P < 0.05). A logistic regression applied to all measured variables, and measurements of dorsal fin size, indicated that the proportion of dorsal fin scarring ( P < 0.001), number of fin nicks ( P < 0.01), and dorsal fin surface area ( P < 0.01) were significant variables and together correctly predicted the sex of 93% (40/43) of the dolphins. The classification function may not be applicable to other populations due to geographic variation in bottlenose dolphin morphology and social structure. The method is quick and noninvasive to apply, and further increases the value of dorsal fin photo-identification pictures.  相似文献   

20.
The purpose of this study is to evaluate the potential correlation between peak wall stress (PWS) and abdominal aortic aneurysm (AAA) morphology and how it relates to aneurysm rupture potential. Using in-house segmentation and meshing software, six 3-dimensional (3D) AAA models from a single patient followed for 28 months were generated for finite element analysis. For the AAA wall, both isotropic and anisotropic materials were used, while an isotropic material was used for the intraluminal thrombus (ILT). These models were also used to calculate 36 geometric indices characteristic of the aneurysm morphology. Using least squares regression, seven significant geometric features (p?相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号