首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In aqueous solution, in the presence of ammonium chloride, N1-substituted 2-nitroimidazoles are readily reduced to the corresponding hydroxylamines. In air, under neutral conditions, analogous to the reactions of aromatic hydroxylamines, 2-hydroxylaminoimidazoles are converted to the azoxy derivatives via a base-catalyzed condensation reaction between the hydroxylamine and its oxidation product, the nitroso derivative. In nitrogen, rearrangement to form the 2-amino-4(5)hydroxyimidazole derivative followed by addition of water across the C4-C5 double bond to yield isomers of a 4,5-dihydro-4,5-dihydroxy derivative appears to be a major reaction. 2-hydroxylaminoimidazoles undergo a complex series of reactions with glutathione. The initial reaction is the formation of a labile conjugate involving an N-S-linkage. Subsequently in the presence of excess GSH, under neutral conditions, two stable conjugates identified as 2-amino-4-S-glutathionyl- and 2-amino-5-S-glutathionyl imidazoles are formed. Nucleophilic attack by GSH on the imidazole ring of a nitrenium ion is postulated as the initial step in the formation of the stable GSH conjugates as well as the 2-amino-4,5-dihydro dihydroxy derivative. The results provide a molecular mechanism for many of the biological effects of N1-substituted 2-nitroimidazoles in hypoxic mammalian cells.  相似文献   

2.
Uric acid is a well-established scavenger of reactive oxygen and nitrogen species such as hydroxyl radical and peroxynitrite. However, little attention has been paid to the relationship between uric acid and nitric oxide. This paper reports the identification and characterization of a reaction product of uric acid induced by nitric oxide. When uric acid was treated with nitric oxide gas in a neutral solution under aerobic conditions, uric acid was consumed, yielding an unknown product. The product was identified as nitrosated uric acid from mass spectrometric data, although the position of the nitroso group on the molecule was not determined. The nitrosated uric acid decomposed to several compounds including uric acid with a half-life of 2.2 min at pH 7.4 and 37 degrees C. The incubation of nitrosated uric acid with glutathione resulted in the formation of S-nitrosoglutathione. Nitrosated uric acid was also formed in the reaction with nitric oxide donors, but not with peroxynitrite. Nitrosated uric acid was detected in human serum and urine by in vitro treatment with a nitric oxide donor. In the reaction of glutathione with the nitric oxide donor, the addition of uric acid caused an increase in the yield of S-nitrosoglutathione. These results indicate that under aerobic conditions nitric oxide can convert uric acid into its nitroso derivative, which can give a nitroso group to glutathione. Uric acid may act as a vehicle of nitric oxide in humans.  相似文献   

3.
Warner JR  Copley SD 《Biochemistry》2007,46(14):4438-4447
Tetrachlorohydroquinone (TCHQ) dehalogenase catalyzes the conversion of TCHQ to 2,6-dichlorohydroquinone during degradation of pentachlorophenol by Sphingobium chlorophenolicum. TCHQ dehalogenase is a member of the glutathione S-transferase superfamily. Members of this superfamily typically catalyze nucleophilic attack of glutathione upon an electrophilic substrate to form a glutathione conjugate and contain a single glutathione binding site in each monomer of the typically dimeric enzyme. TCHQ dehalogenase, in contrast to most members of the superfamily, is a monomer and uses 2 equiv of glutathione to catalyze a more complex reaction. The first glutathione is involved in formation of a glutathione conjugate, while the second is involved in the final step of the reaction, a thiol-disulfide exchange reaction that regenerates the free enzyme and forms GSSG. TCHQ dehalogenase is severely inhibited by its aromatic substrates, TCHQ and trichlorohydroquinone (TriCHQ). TriCHQ acts as a noncompetitive inhibitor of the thiol-disulfide exchange reaction required to regenerate the free form of the enzyme. In addition, dissociation of the GSSG product is inhibited by TriCHQ. The thiol-disulfide exchange reaction is the rate-limiting step in the reductive dehalogenation reaction under physiological conditions.  相似文献   

4.
The estimation of glutathione disulfide (GSSG) is based on the NADPH-dependent glutathione reductase reaction. A new method has been developed to eliminate the inactivating effect of N-ethylmaleimide (NEM), added to prevent glutathione oxidation, on glutathione reductase. This method takes advantage of instability of NEM in alkaline solutions. The product of NEM hydrolysis, N-ethylmaleamic acid, obtained under accurate pH-controlled conditions, is compatible with a good activity of glutathione reductase which allows total recovery and measurement of GSSG. The method, applied to estimation of GSSG content in human erythrocytes and rat liver, gives results in optimum agreement with values reported in literature. Because of its simple performance and rapidity, the procedure can be considered an improved method in removing NEM and is particularly advantageous when a large number of biological samples must be treated and estimated.  相似文献   

5.
O-Sulfate group of gonyautoxin I and IV is transformed into methylene to form neosaxitoxin by thiols such as glutathione, a common cellular scavenger, in mild conditions. We isolated the intermediate of this conversion and propose that this reaction proceeds through formation of thiohemiketal, 1,2 shift to form stable thioether intermediate, and then redox exchange at sulfur atom to form the final product.  相似文献   

6.
We have engineered an intein which spontaneously and reversibly forms a thiazoline ring at the native N-terminal Lys-Cys splice junction. We identified conditions to stablize the thiazoline ring and provided the first crystallographic evidence, at 1.54 Å resolution, for its existence at an intein active site. The finding bolsters evidence for a tetrahedral oxythiazolidine splicing intermediate. In addition, the pivotal mutation maps to a highly conserved B-block threonine, which is now seen to play a causative role not only in ground-state destabilization of the scissile N-terminal peptide bond, but also in steering the tetrahedral intermediate toward thioester formation, giving new insight into the splicing mechanism. We demonstrated the stability of the thiazoline ring at neutral pH as well as sensitivity to hydrolytic ring opening under acidic conditions. A pH cycling strategy to control N-terminal cleavage is proposed, which may be of interest for biotechnological applications requiring a splicing activity switch, such as for protein recovery in bioprocessing.  相似文献   

7.
Glutathione monoethyl ester (L-gamma-glutamyl-L-cysteinylglycine ethyl ester) was shown by R. N. Puri and A. Meister (1983, Proc. Natl. Acad. Sci. USA 80, 5258-5260) to be taken up by several tissues and intracellularly hydrolyzed to GSH. Since GSH itself is not significantly taken up by tissues, glutathione monoesters provide the most direct and convenient means available for increasing the intracellular GSH concentration of many tissues and cell types. In previous studies glutathione esters were prepared by HCl- or H2SO4-catalyzed esterification, and the product esters were precipitated as acidic salts by addition of ether to the reaction mixtures. In the present studies, glutathione monoethyl ester was synthesized by H2SO4-catalyzed esterification in the presence of sodium sulfate as the dehydrating agent. When no GSH remained, alcohol-washed Dowex-1 resin (hydroxide form) was added to remove sulfate and neutralize the reaction mixture. After the resin was removed by filtration, glutathione monoethyl ester crystallized in the chilled filtrate. The product was free of sulfate, GSH, and glutathione diester; its solutions in water or saline were neutral. Preparations obtained to date are nontoxic when administered to mice in doses up to at least 10 mmol/kg. Progress of the esterification reaction and purity of the product were determined quantitatively by HPLC after derivatization of the thiols with monobromobimane. Elution times of GSH, glutathione diester, and glutathione monoesters involving either the glutamyl or the glycyl carboxylate groups are reported.  相似文献   

8.
Dehydro-L-ascorbic acid (DAA) exists mainly in its C2 hydrated bicyclic form (5) in an aqueous solution, and monocyclic DAA (3), which is the expected reaction product immediately after the oxidation of AA, has not been observed by NMR spectroscopy. The formation mechanism for 5 from 3 and the stability of 5 were examined by the semi-empirical molecular orbital method (MOPAC). It was indicated that the protonation reaction was the key step in the formation of 5, therefore, the formation of 5 is thought to be more difficult under physiological conditions which mostly involve in the neutral or slightly alkaline state. However, by NMR, it was confirmed that, even in a neutral or slightly alkaline state very close to physiological conditions, the predominant form of DAA existing in an aqueous solution immediately after the enzymatic oxidation of AA was confirmed to be 5, although the possible existence of other forms of DAA at very low concentrations could not be completely excluded.  相似文献   

9.
Dehydro-L-ascorbic acid (DAA) exists mainly in its C2 hydrated bicyclic form (5) in an aqueous solution, and monocyclic DAA (3), which is the expected reaction product immediately after the oxidation of AA, has not been observed by NMR spectroscopy. The formation mechanism for 5 from 3 and the stability of 5 were examined by the semi-empirical molecular orbital method (MOPAC). It was indicated that the protonation reaction was the key step in the formation of 5, therefore, the formation of 5 is thought to be more difficult under physiological conditions which mostly involve in the neutral or slightly alkaline state. However, by NMR, it was confirmed that, even in a neutral or slightly alkaline state very close to physiological conditions, the predominant form of DAA existing in an aqueous solution immediately after the enzymatic oxidation of AA was confirmed to be 5, although the possible existence of other forms of DAA at very low concentrations could not be completely excluded.  相似文献   

10.
Rat liver supernatants were shown to contain an enzymatic activity catalyzing in both forward and reverse directions the reversible sulfitolysis of glutathione disulfide. The enzymatic sulfitolysis has maximal activity at pH 7. S-Sulfoglutathione, which is a product of the sulfitolysis, was isolated by passage through an ion-exchange column. Three different assays were applied to determine S-sulfoglutathione, viz., methods based on the ninhydrin reaction, the formation of a thiazoline derivative in strong acid, and the use of radioactively labeled glutathione. The reversal of the sulfitolysis, i.e., the reaction of S-sulfoglutathione with glutathione, was studied directly by determination of sulfite with radioactive N-ethylmaleimide, or indirectly by coupling to the NADPH- and glutathione reductase-linked reduction of glutathione disulfide.Chromatographic analysis of rat liver supernatants demonstrated that all fractions catalyzing the reversible sulfitolysis did also catalyze the previously studied thiol-disulfide interchange of glutathione and the mixed disulfide of cysteine and glutathione.The reduction of thiosulfate esters, such as S-sulfocysteine and trimethylammonium-ethylthiosulfate, with glutathione was also catalyzed by the enzyme active in the sulfitolysis, which indicates an important biosynthetic role of the enzyme in microorganisms synthesizing cysteine via S-sulfocysteine. The enzyme is also capable of participating in the formation of the naturally occurring S-sulfoglutathione.  相似文献   

11.
S-(N-methylcarbamoyl)glutathione, a chemically-reactive glutathione conjugate, has been isolated from the bile of rats administered methyl isocyanate and characterized, as its N-benzyloxycarbonyl dimethylester derivative, by tandem mass spectrometry. The ability of this glutathione adduct to donate an N-methylcarbamoyl moiety to the free -SH group of cysteine was evaluated in vitro with the aid of a highly specific thermospray LC/MS assay procedure. The glutathione adduct reacted readily with cysteine in buffered aqueous media (pH 7.4, 37 degrees C) and after 2 hr, 42.5% of the substrate existed in the form of S-(N-methylcarbamoyl)cysteine. The reverse reaction, i.e. between the cysteine adduct and free glutathione, also took place readily under these conditions. It is concluded that conjugation of methyl isocyanate with glutathione in vivo affords a reactive S-linked product which displays the potential to carbamoylate nucleophilic amino acids. The various systemic toxicities associated with exposure of animals or humans to methyl isocyanate could therefore be due to release of the isocyanate from its glutathione conjugate, which thus may serve as a vehicle for the transport of methyl isocyanate in vivo.  相似文献   

12.
Selenotrisulfide (e.g., glutathione selenotrisulfide (GSSeSG)) is an important intermediate in the metabolism of selenite. However, its reactivity with biological substances such as peptides and proteins in the subsequent metabolism is still far from clearly understood, because of its chemical instability under physiological conditions. Penicillamine (Pen) is capable of generating a chemically stable and isolatable selenotrisulfide, PenSSeSPen. To explore the metabolic fate of selenite in red blood cells (RBC), we investigated the reaction of selenotrisulfide with human hemoglobin (Hb) using PenSSeSPen as a model. PenSSeSPen rapidly reacted with Hb under physiological conditions. From the analysis of selenium binding using the Langmuir type binding equation, the apparent binding number of selenium per Hb tetramer almost corresponded to the number of reactive thiol groups of Hb. The thiol group blockade of Hb by iodoacetamide treatment completely inhibited the reaction of PenSSeSPen with Hb. In addition, MALDI-TOF mass spectrometric analysis of the selenium-bound Hb revealed that PenSSe moiety binds to the beta subunits of Hb. Overall, the reaction of PenSSeSPen with Hb appears to involve the thiol exchange between Pen and the cysteine residues on the beta subunit of Hb.  相似文献   

13.
Intermediates in the ribulose-1,5-bisphosphate carboxylase reaction   总被引:2,自引:0,他引:2  
At least two intermediates of the D-ribulose-1,5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39) reaction were liberated in detectable amounts when the functioning enzyme from Rhodospirillum rubrum was quenched in acid. Using substrate labeled with 32P in C-1, [32P]orthophosphate (Pi) was found when the quenched solution was rapidly processed for extraction of Pi as the acid molybdate complex. Reaction with sodium borohydride under mildly alkaline conditions immediately after acid quenching of the carboxylase reaction decreased the amount of 32Pi that was observed by 68%. The compound whose degradation to Pi was prevented by reaction with sodium borohydride decomposed under both acid and neutral conditions with a half-time of about 5 min at 25 degrees C and was assigned to the beta-keto acid recently demonstrated for the spinach enzyme ( Schloss , J.V., and Lorimer , G.H. (1982) J. Biol. Chem. 257, 4691-4694). It was sufficiently stable upon neutralization to react productively with fresh enzyme. As substrate CO2 concentration was decreased below the steady state Km value, the proportion of the 32P that did not react with sodium borohydride increased, indicative of a second unstable intermediate that precedes the carboxylation step. The decomposition of the latter intermediate to Pi, which occurs with a t1/2 less than or equal to 6 ms, was prevented if I2 was present in the acid quench medium. These are properties expected of the 2,3- enediol form of ribulose bisphosphate. Both intermediates reach their maximum levels when product formation is most rapid and disappear when product formation is complete as expected of reaction intermediates.  相似文献   

14.
Human serum albumin (HSA), the most abundant protein in plasma, has been proposed to have an antioxidant role. The main feature responsible for this property is its only thiol, Cys34, which comprises approximately 80% of the total free thiols in plasma and reacts preferentially with reactive oxygen and nitrogen species. Herein, we show that the thiol in HSA reacted with hydrogen peroxide with a second-order rate constant of 2.26 M(-1) s(-1) at pH 7.4 and 37 degrees C and a 1:1 stoichiometry. The formation of intermolecular disulfide dimers was not observed, suggesting that the thiol was being oxidized beyond the disulfide. With the reagent 7-chloro-4-nitrobenzo-2-oxa-1,3-diazol (NBD-Cl), we were able to detect the formation of sulfenic acid (HSA-SOH) from the UV-vis spectra of its adduct. The formation of sulfenic acid in Cys34 was confirmed by mass spectrometry using 5,5-dimethyl-1,3-cyclohexanedione (dimedone). Sulfenic acid was also formed from exposure of HSA to peroxynitrite, the product of the reaction between nitric oxide and superoxide radicals, in the absence or in the presence of carbon dioxide. The latter suggests that sulfenic acid can also be formed through free radical pathways since following reaction with carbon dioxide, peroxynitrite yields carbonate radical anion and nitrogen dioxide. Sulfenic acid in HSA was remarkably stable, with approximately 15% decaying after 2 h at 37 degrees C under aerobic conditions. The formation of glutathione disulfide and mixed HSA-glutathione disulfide was determined upon reaction of hydrogen peroxide-treated HSA with glutathione. Thus, HSA-SOH is proposed to serve as an intermediate in the formation of low molecular weight disulfides, which are the predominant plasma form of low molecular weight thiols, and in the formation of mixed HSA disulfides, which are present in approximately 25% of circulating HSA.  相似文献   

15.
Attempts have been made to conjugate a variety of molecules with oligonucleotides to achieve useful functions. In this study, we have established a new efficient method for post-synthetic conjugation of oligonucleotides with the use of the 2-amino-6-vinylpurine nucleoside. Amino nucleophiles form the corresponding conjugates under acidic conditions, whereas thiol nucleophiles reacted efficiently under alkaline conditions. Thus, glutathione and HS-Cys-(Arg)8 without protecting groups were efficiently conjugated to the 2-amino-6-vinylpurine-bearing ODN under alkaline conditions. The use of 2-amino-6-vinylpurine as an agent for conjugation is advantageous in that it is stable during the reaction and may be applied to conjugation of ODNs with multiple functional molecules.  相似文献   

16.
The thermostability of the B. subtilis neutral protease was studied under various conditions. At elevated temperatures the enzyme was inactivated as a result of autolysis. The rate of inactivation did not depend on the enzyme concentration and the enzyme was most stable near its pH optimum. The rate of inactivation was unaffected by the presence of a second protease during the incubation at high temperatures. The results indicate that the rate of thermal inactivation of the neutral protease is determined by the kinetics of local unfolding processes that precede autolysis rather than by the catalytic rate of the autodigestion reaction or an irreversible unfolding step.  相似文献   

17.
The d-glucuronate product of myo-inositol oxygenase (EC 1.13.99.1) is efficiently reduced by NADPH in the presence of either purified d-glucuronate reductase (EC 1.1.1.19), or reductase that is part of a protein aggregate that also contains the oxygenase. This occurs despite the fact that the maximum concentration of d-glucuronate that could be formed by the oxygenase under the conditions used for the coupled enzyme experiments is 7 μM, and 10 μM externally supplied d-glucuronate (Km = 7.6 mM) does not support any detectable NADPH oxidation under the reaction conditions. The most likely explanation for the results is that the uncyclized aldehyde form of d-glucuronate is the product of the oxygenase reaction, and that it diffuses into solution and is captured by the reductase before it cyclizes to the more stable but less reactive hemiacetal form.  相似文献   

18.
Noncovalent aggregation is a side reaction in the process of reconstitution of oligomeric enzymes (e.g., lactic dehydrogenase) after preceding dissociation, denaturation, and deactivation. The aggregation product is of high molecular weight and composed of monomers which are trapped in a minium of conformational energy different from the one characterizing the native enzyme. This energy minimum is protected by a high activation energy of dissociation such that the aggregates are perfectly stable under nondenaturing conditions, and their degradation is provided only by applying strong denaturants, e.g., 6 M guanidine hydrochloride at neutral or acidic pH. The product of the slow redissolution process is the monomeric enzyme in its random configuration, which may be reactivated by diluting the denaturant under optimum conditions of reconstitution. The yield and the kinetics of reactivation of lactic dehydrogenase from pig skeletal muscle are not affected by the preceding aggregation-degradation cycle and are independent of different modes of aggregate formation (e.g., by renaturation at high enzyme concentration or heat aggregation). The kinetics of reactivation may be described by one single rate-determining bimolecular step with k2 = 3.9 x 10(4) M-1 s-1 at zero guanidine concentration. The reactivated enzyme consists of the native tetramer, characterized by enzymatic and physical properties identical with those observed for the enzyme in its initial native state.  相似文献   

19.
Jiang M  Cao Y  Guo ZF  Chen M  Chen X  Guo Z 《Biochemistry》2007,46(38):10979-10989
Menaquinone is an electron carrier in the respiratory chain of Escherichia coli during anaerobic growth. Its biosynthesis involves (1R,6R)-2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylic acid (SHCHC) as an intermediate, which is believed to be derived from isochorismate and 2-ketoglutarate by one of the biosynthetic enzymes-MenD. However, we found that the genuine MenD product is 2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-carboxylic acid (SEPHCHC), rather than SHCHC. This is supported by the following findings: (i) isochorismate consumption and SHCHC formation are not synchronized in the enzymic reaction, (ii) the rate of SHCHC formation is independent of the enzyme concentration, (iii) SHCHC is not formed in weakly acidic or neutral solutions in which the isochorismate substrate is readily consumed by MenD, and (iv) the MenD turnover product, formed under conditions disabling SHCHC formation, possesses spectroscopic characteristics consistent with the structure of SEPHCHC and spontaneously undergoes 2,5-elimination to form SHCHC and pyruvate in weakly basic solutions. Two properties of the intermediate, ultraviolet transparency and chemical instability, provide a rationale for the fact that SHCHC has been consistently mistaken as the MenD product. In accordance with these findings, MenD was rediscovered to be a highly efficient enzyme with a high second-order rate constant and should be renamed SEPHCHC synthase. Intriguingly, the enzymatic activity responsible for conversion of SEPHCHC into SHCHC appears not to associate with any of the known enzymes in menaquinone biosynthesis but is present in the crude extract of E. coli K12, suggesting that a genuine SHCHC synthase remains to be identified to fully elucidate the ubiquitous biosynthetic pathway.  相似文献   

20.
The possibility for investigation of catalase (CAT) activity under the conditions of intact E. coli cells was estimated. This approach is based on the possibility of hydrogen peroxide freely cross biological membranes. CAT activity of native cells had a broad maximum between pH values 4.5 and 7.5. Desintegration of cells by freezing--thawing and ultrasonication indicated that there were two CAT activity peaks at pH values about 3.5 and 7.0. Activity of CAT with acid pH-optimum decreased at cell desintegration, but one with neutral pH-optimum was rather stable under this procedure. The enzyme in native conditions was less sensitive to the inhibition by high concentrations of hydrogen peroxide than its counterpart from destroyed cells. Activity of CAT in native and desintegrated cell preparations had different sensitivity to heating and inhibition by reduced glutathione, but it was inhibited by azide similarly. Difference in the CAT properties of native and desintegrated bacteria preparations may be explained by different possibility to penetrate cell membrane by reagents and/or by possible modification of the enzyme properties at destruction of native microenvironment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号