首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
I. M. Miller  D. D. Baker 《Protoplasma》1985,128(2-3):107-119
Summary A correlated light and electron microscopic study was undertaken of the initiation and development of root nodules of the actinorhizal tree species,Elaeagnus angustifolia L. (Elaeagnaceae).Two pure culturedFrankia strains were used for inoculation of plants in either standing water culture or axenic tube cultures. Unlike the well known root hair infection of other actinorhizal genera such asAlnus orMyrica the mode of infection ofElaeagnus in all cases was by direct intercellular penetration of the epidermis and apoplastic colonization of the root cortex. Root hairs were not involved in this process and were not observed to be deformed or curled in the presence of the actinomyceteFrankia. In response to the invasion of the root, host cells secreted a darkly staining material into the intercellular spaces. The colonizingFrankia grew through this material probably by enzymatic digestion as suggested by clear dissolution zones around the hyphal strands. A nodule primordium was initiated from the root pericycle, well in advance of the colonizingFrankia. No random division of root cortical cells, indicative of prenodule formation was observed inElaeagnus. As the nodule primordium grew in size it was surrounded by tanninised cells of a protoperiderm. The endophyte easily traversed this protoperiderm, and once inside the nodule primordium cortex ramified within the intercellular spaces at multiple cell junctions. Invasion of the nodule cortical cells occurred when a hyphal branch of the endophyte was initiated and grew through the plant cell wall, again by apparent enzymatic digestion. The plant cell plasmalemma of invaded cells always remained intact and numerous secretory vesicles fused with it to encapsulate the advancingFrankia within a fibrous cell wall-like material. Once within the host cell some endophyte cells began to differentiate into characteristic vesicles which are the presumed site of nitrogen fixation. This study clearly demonstrates that alternative developmental pathways exist for the development of actinorhizal nitrogen-fixing root symbioses.  相似文献   

2.
R. H. Berg  L. McDowell 《Protoplasma》1987,136(2-3):104-117
Summary This is an ultrastructural study of development of infected cells in nitrogen fixing root nodules ofCasuarina spp. While several aspects of development are similar to those found in many other actinorhizae, unusual aspects of development of the host cell and differentiation of the endophyte inCasuarina are correlated with unusual changes in the wall of the infected cell. Instead of vesicles the endophyte forms atypical hyphae in mature infected cells. These unusual hyphal forms are termed intracellular hyphae. Intracellular hyphae are nonseptate hyphae which originate and terminate within the same host cell, and have a varying diameter and a multidirectional growth and branching pattern. A laminate surface layer previously undescribed on hyphae ofFrankia is a feature common to mostCasuarina endophytic hyphae and is probably similar chemically to the laminae comprising the multilamellate envelope of endophytic vesicles in other actinorhizae.This paper is Florida Agricultural Experiment Station Journal Series No. 7350.  相似文献   

3.
Samira R. Mansour 《Protoplasma》1994,183(1-4):126-130
Summary Measurements of auxin and cytokinin activities in extracts ofCasuarina root nodules were made. The nodules were induced either by pure culture ofFrankia strain CgI4 or by crushed nodule inoculum. Levels of cytokinin activity were significantly higher in root nodules induced by pureFrankia culture than in those induced by crushed nodule inoculum. However, the reasons for this are unknown. Seasonal variation in levels of cytokinin activity inCasuarina nodules has also been detected.Dedicated to the memory of Professor John G. Torrey  相似文献   

4.
The seed morphology of 151 species of Southern AfricanOrchidoideae (Orchideae andDiseae; sensuDressler 1981) was studied by means of scanning electron microscopy. Two different seed types were found. (1) In the majority of species the seeds are minute and fusiform. The seed coat is made up of comparatively few concave and elongate testa cells with straight or slightly undulate and generally unthickened anticlinal cell walls. The seed type was here termed Satyrium-type. While most species are very similar in the ornamentation of the periclinal walls of their seed coat, considerable variation was found inHolothrix where two distinct groups can be recognized in this respect. (2) A remarkably different seed type was observed inDisa uniflora and three apparently closely related species (Disa uniflora-type), where large balloon-like seeds occur. Their seed coat consists of convex cells with undulate anticlinal walls. It is suggested that this seed type is a derived condition and has evolved in adaptation to the specialized habitat alongside streams. The possibility of hydrochory in these four species is briefly discussed.  相似文献   

5.
Summary The early biochemical and structural events associated with the infection of Alnus byFrankia are still largely unknown. These studies have been hampered by the difficulty of localizing precisely the site of inoculation on the root surface and of standardizing the inoculum dose. To facilitate these investigations, we describe a new spot inoculation method wellsuited to study the Alnus-Frankia system. This method involves the growth ofFrankia in the presence of microcarrier and their subsequent deposition on the alder root surface as an inoculum dose. The ability of this new procedure to induce nodulation close to the point of inoculation has been observed.  相似文献   

6.
张爱梅  殷一然  孔维宝  朱学泰  孙坤 《生态学报》2021,41(20):8212-8221
根瘤是微生物侵染植物根部并与之形成的共生结构,这些微生物都可被称为植物内生菌。豆科植物根瘤中的内生菌常常又被称为根瘤菌,而侵染非豆科植物形成根瘤的主要是放线菌弗兰克氏菌,这些非豆科植物又被称为放线菌结瘤植物。西藏沙棘是一种典型的放线菌结瘤植物,由于其分布生境的特殊性,对其根瘤内生菌的研究具有重要的生态意义。对于西藏沙棘根瘤内生菌的研究,培养方法因难以模拟自然条件而不易获得纯培养,高通量测序技术对其多样性的研究提供了便利。因此,本研究以生长在甘肃省天祝县金强河河滩地的西藏沙棘根瘤为材料,采用16S rRNA基因扩增子高通量测序方法,结合OTU分析,对西藏沙棘根瘤内生菌的多样性进行探讨。实验结果表明,西藏沙棘根瘤内生菌具有丰富的多样性,根瘤内的优势属为共生固氮的弗兰克氏菌属(Frankia),其相对丰度为47.63%,共检测到7个弗兰克氏菌属的OTUs;根瘤内除弗兰克氏菌外,还存在大量的非弗兰克氏菌,共检测到1523个OTUs,隶属于22个门、33个纲、69个目、113个科和202个属,相对丰度排名前9的属中有25个非弗兰克氏菌属的OTUs。该研究也表明,西藏沙棘根瘤内生菌具有丰富的多样性,西藏沙棘根瘤中不仅存在着可共生固氮的弗兰克氏菌,并且还分布着非弗兰克氏菌;在同一根瘤样品中,弗兰克氏菌属还具有不同的物种。本研究不仅拓展了西藏沙棘根瘤内生菌多样性的研究方法,还为同一寄主植物中弗兰克氏菌多样性的研究提供了分析思路。  相似文献   

7.
J. H. Becking 《Plant and Soil》1984,78(1-2):105-128
Summary Root nodules ofDryas drummondii are of the coralloid type (Alnus type). The endophyte is present in the middle cortical cells of the root-nodule tissue. Transmission electron micrographs revealed an actinorhizal endophyte with septate hyphae and non-septate spherical or ovoid vesicles. Vesicles always possess at the base a septum; septa formation in the endophyte is always associated with the presence of mesosomes. Branching of the endophyte is not necessarily correlated with septum formation. Hyphal structures are more prominent in the apical part of the root nodule and vesicles are more numerous in a broad zone below this. In the middle and towards the base of the root nodule the endophytic structures appear in a stage of disintegration. Vesicles appear in a broad region near the periphery of the host cell and regularly show no strict orientation towards the host-cell wall. In the center of the host cells only hyphae occur. In the intercellular spaces between the host cells theFrankia endophyte produces spore-like structures although the outline of the sporangia is often faint.The coralloid root ofRubus ellipticus shows characteristically a basal rootlet initiated below the dichotomous branching of the nodular lobes, but extending beyond the root nodule. The endophyte is only present in the outer cortex of the root nodule in a 1–2 cell wide layer. This endophytic layer is bounded, internally as well as externally, with a 4–5 cell wide layer of tannin-filled host cells. The implications of this situation are discussed. Tannin-filled cells occur regularly inRubus species and their arrangement has been used for taxonomic purposes within the genus. TheRubus endophyte is aFrankia species with septate hyphae and distinctly septate spherical vesicles. The ultrastructure of the vesicles of theRubus endophyte is very similar to that of theAlnus endophyte.  相似文献   

8.
Indole compounds secreted byFrankia sp. HFPArI3 in defined culture medium were identified with gas chromatography-mass spectrometry (GC-MS). WhenFrankia was grown in the presence of13C(ring-labelled)-L-tryptophan,13C-labelled indole-3-acetic acid (IAA), indole-3-ethanol (IEtOH), indole-3-lactic acid (ILA), and indole-3-methanol (IMeOH) were identified.High performance liquid chromatography (HPLC) and GC-MS with selected ion monitoring were used to quantify levels of IAA and IEtOH inFrankia culture medium. IEtOH was present in greater abundance than IAA in every experiment. When no exogenous trp was supplied, no or only low levels of indole compounds were detected.Seedling roots ofAlnus rubra incubated in axenic conditions in the presence of indole-3-ethanol formed more lateral roots than untreated plants, indicating that IEtOH is utilized by the host plant, with physiological effects that modify patterns of root primordium initiation.  相似文献   

9.
Summary Seedlings ofCasuarina spp. andAllocasuarina spp. were grown from seed in the greenhouse and inoculated with a nodule suspension fromC. equisetifolia. Plants ofCasuarina spp. nodulated regularly and were effective in nitrogen-fixation. Only one species ofAllocasuariona, A. lehmanniana formed root nodules. Using these plants as source of inoculum, the isolation of a newFrankia sp. HFPA11I1 (HFP022 801) was made and the strain was grown in pure culture.Frankia sp. HFPA11I1 grows well in a defined medium and shows typical morphological characteristics. In media lacking combined nitrogen, the filamentours bacterium forms terminal vesicles in abundance and differentiaties large intrahyphal or terminal sporangia containing numerous spores. This strain, used as inoculum, nodulates effectively seedlings ofC. equisietifolia andC. cunninghamiana, forming nodules with verically-growing nodule roots. Although effective in acetylene reduction, the endophyte within the nodules is filamentous and lacks veiscles. When used to inoculated seedlings ofA llocasuarina lehmanniana, Frankia sp. HFPA11I1 induces root nodules which are coralloid and lacking nodule roots. The nodules are effective in acetylene reduction and the filamentous hyphae ofFrankia within the nodule lobes lack vesicles. Effective nodulation inA. Lehmanniana depends upon environmental conditions of the seedlings and proceeds much more slowly than in Casuariana.  相似文献   

10.
Bacterial growth in the rhizosphere and resulting changes in plant growth parameters were studied in small aseptic seedlings of birch (Betula pendula and B. pubescens) and grasses (Poa pratensis and Festuca rubra). The seedlings were inoculated with three Frankia strains (Ai1a and Ag5b isolated from native Alnus root nodules and Ai17 from a root nodule induced by soil originating from a Betula pendula stand), and three associative N2-fixing bacteria (Enterobacter agglomerans, Klebsiella pneumoniae and Pseudomonas sp., isolated from grass roots). Microscopic observations showed that all the Frankia strains were able to colonize and grow on the root surface of the plants tested without addition of an exogenous carbon source. No net growth of the associative N2-fixers was observed in the rhizosphere, although inoculum viable counts were maintained over the experimental period. Changes in both the biomass and morphology of plant seedlings in response to bacterial inoculation were recorded, which were more dependent on the plant species than on the bacterial strain.  相似文献   

11.
The ultrastructural aspects ofCyperus iria leaves showing the C4 syndrome and the typical C3 species,Carex siderosticta, in the Cyperaceae family were examined.C. iria exhibited the chlorocyperoid type, showing an unusual Kranz structure with vascular bundles completely surrounded by two bundle sheaths. The cellular components of the inner Kranz bundle sheath cells were similar to those found in the NADP-ME C4 subtype, having centrifugally arranged chloroplasts with greatly reduced grana and numerous starch grains. Their chloroplasts contained convoluted thyla-koids and a weakly-developed peripheral reticulum, although it was extensive mostly in mesophyll cell chloroplasts. The outer mestome bundle sheath layer was sclerenchymatous and generally devoid of organelles, but had unevenly thickened walls. Suberized lamellae were present on its cell walls, and they became polylamellate when traversed by plasmodesmata. Mesophyll cell chloroplasts showed well-stacked grana with small starch grains. InC. siderosticta, vascular bundles were surrounded by the inner mestome sheath and the outer parenchymatous bundle sheath with intercellular spaces. The mestome sheath cells degraded in their early development and remained in a collapsed state, although the suberized lamellae retained polylamellate features. Plastids with a crystalline structure, sometimes membrane-bounded, were found in the epidermal cells. The close interveinal distance was 35–50 μm inC. iria, whereas it was 157–218 μm inC. siderosticta. These ultrastructural characteristics were discussed in relation to their photosynthetic functions.  相似文献   

12.
Optimum growth conditions and inoculation regimes were determined for severalFrankia strains isolated from both Alnus and Casuarina host plants. Growth conditions were estabilished that allowed a reduction in generation time to less than 15 hours for certain Alnus derivedFrankia. Differences in plant growth response were observed with differing inoculum levels and soil mixtures. Elite strains of Alnus derivedFrankia were isolated that elicited similar growth reponses in allAlnus species tested; however, differences were observed betweenFrankia strains and plant growth response of variousCasuarina species tested.  相似文献   

13.
Summary High perfomance liquid chromatography (HPLC) of the products of [5-3H] tryptophan metabolism byFrankia sp. Avc I1 indicates that small amounts of [3H] indole-3-acetic acid (IAA) are excreted into the growth medium.Frankia has a limited capacity for the catabolism of [2-14C]IAA and the product that accumulates is different from that detected inRhizobium japonicum cultures following inoculation with [2-14C]IAA. The data imply that the rate of turnover of IAA is much more rapid inRhizobium thanFrankia and that the two organisms employ different routes for the catabolism of IAA.  相似文献   

14.
Investigations on the ecological function of ineffectiveFrankia strains and their behaviour in competition with effectiveFrankia strains indicated an enhanced plant growth upon dual inoculation with increasing amounts of effective (i.e. N2-fixing)Frankia strains and simultaneous inoculation with a constant amount of an ineffectiveFrankia strain. Enhanced plant growth was measured as increase in plant height and total dry weight at constant shoot/root ratio. The stimulating effect of the ineffective strain was independent of the plant clone and was obtained with bothAlnus glutinosa clones W I and B II, which were resistant and susceptable, respectively, to the ineffective strain. Stimulation was also independent of the nodulation conditions. Short-term studies (7 weeks) under axenic conditions and greenhouse experiments during 3 months showed comparable results, not only in plant growth but also in nodule formation. Increment in plant growth was not necessarily correlated to higher nodule formation with the effectiveFrankia strains.  相似文献   

15.
Studies were made of the polysaccharide-hydrolyzing activity inFrankia (Actinomycetales) grown in synthetic media using modifications of three standard assay procedures. In screening five different strains ofFrankia for cellulase activity, based on the method of utilization of cellulose in liquid culture, only one strain, CcI3, degraded filter paper cellulose to complete disintegration and only under very specific conditions of pH and primary carbon source. When carboxymethylcellulose (CMC) at 1% was used as substrate, all five strains showed the capacity to produce reducing sugars as hydrolytic products. Microcystalline cellulose, xylans and gum arabic were hydrolyzed to a lesser extent. Optimum activity depended upon pH and primary carbon source with pH 5.0 and pyruvate or propionate producing highest activities. In fractionation studies of culturedFrankia, assays for hydrolysis of 1% CMC in liquid medium showed that highest activity was in the enzyme preparation supernatant with lesser activity in the cell-free extract and cell wall fractions.Frankia strain CpI1 showed the greatest total hydrolytic activity against CMC after 2 weeks of culture. Strains ArI3 and CcI3 also showed good activity. The agar plate method for direct dye-polysaccharide interaction proved to be the least sensitive assay method with only ArI3 showing significant activity using CMC as substrate. It appears that theFranka strains grown in synthetic media all showed hydrolytic activity but the degree of hydrolysis of polysaccharides to reducing sugars depends upon strain of bacteria and very specific cultural conditions.  相似文献   

16.
Summary The first of two major steps in the infection process in roots ofParasponia rigida (Ulmaceae) following inoculation byRhizobium strain RP501 involves the invasion ofRhizobium into the intercellular space system of the root cortex. The earliest sign of root nodule initiation is the presence of clumps of multicellular root hairs (MCRH), a response apparently unique amongRhizobium-root associations. At the same time or shortly after MCRH are first visible, cell divisions are initiated in the outer root cortex of the host plant, always subjacent to the MCRH. No infection threads were observed in root hairs or cortical cells in early stages. Rhizobial entry through the epidermis and into the root cortex was shown to occur via intercellular invasion at the bases of MCRH. The second major step in the infection process is the actual infectionper se of host cells by the rhizobia and formation of typical intracellular infection threads with host cell accommodation. This infection step is probably the beginning of the truly symbiotic relationship in these nodules. Rhizobial invasion and infection are accompanied by host cortical cell divisions which result in a callus-like mass of cortical cells. In addition to infection thread formation in some of these host cortical cells, another type of rhizobial proliferation was observed in which large accumulations of rhizobia in intercellular spaces are associated with host cell wall distortion, deposition of electron-dense material in the walls, and occasional deleterious effects on host cell cytoplasm.  相似文献   

17.
Water use and yield of tomatoes under limited water and excess boron   总被引:1,自引:0,他引:1  
Ben-Gal  Alon  Shani  Uri 《Plant and Soil》2003,256(1):179-186
The role of tripartite associations among Frankia, Alpova diplophloeus (an ectomycorrhizal fungus) and Alnus tenuifolia in growth, nitrogen fixation, ectomycorrhizal formation, and mineral acquisition of A. tenuifolia was investigated. Seedlings of A. tenuifolia were planted in pots containing a mixture of ground basalt–perlite, or perlite alone, which served as the control. The seedlings were inoculated with Frankia isolated from root nodules of alder, followed by spores of A. diplophloeus and grown for 5 months in a greenhouse. The seedlings grown in the pots with a mixture of ground basalt–perlite after dual inoculation with Frankia and A. diplophloeus had the heaviest shoots and root nodules in dry weight, and showed the greatest nitrogen-fixing ability measured by acetylene reduction. Ectomycorrhizae formed with A. diplophloeus increased when this fungus was inoculated together with Frankia. The mineral composition (P, K, Ca, Fe, Mg, Mn, Na, Si and Al) in the seedlings was also determined. The results of these experiments showed that the tripartite associations could improve the growth, nitrogen fixation and mineral acquisition (rock solubilization) of A. tenuifolia.  相似文献   

18.
Diversity of Frankia isolates originating from lobes of single nodules collected on Alnus glutinosa root systems has been analyzed using isozyme electrophoresis method. Analysis of isozyme patterns showed no divergence among strains isolated from the same nodule. Each nodule (among 10 assayed) was inhabited by a single Frankia strain.  相似文献   

19.
Lavire  C.  Cournoyer  B. 《Plant and Soil》2003,254(1):125-137
The actinomycete Frankia is of fundamental and ecological interests for several reasons including its wide distribution, its ability to fix nitrogen, differentiate into sporangium and vesicle (specialized cell for nitrogen-fixation), and to nodulate plants from about 24 genera. Here, we present a review on the genetics performed so far on Frankia. At the end of July 2001, 293 kbp of Frankia DNA sequences were found in the databases. Thirty five percent of these sequences corresponded to full gene or gene cluster sequences. These genes could be divided according to their role into 6 key activities: gene translation (rrnA and tRNA pro gene), proteolysis (pcr genes), assimilation of ammonium (glnA and glnII), protection against superoxide ions (sodF), nitrogen fixation (nif cluster), and plasmid replication. We present a review of these genetic islands; their function, expression, localization and particular properties are discussed. A comparative analysis of Frankia nif genes from various strains and species is presented. An improved nomenclature for some of these genes is suggested to avoid conflicts. Frankia plasmids DNA sequences are also presented. The novel trends in Frankia genetics are described.  相似文献   

20.
O. Balboa  Guacolda Avila  P. Arce 《Protoplasma》1988,147(2-3):143-148
Summary Root nodulesTalguenea quinquenervia Gill et Hook (Rhamnaceae) are restricted to the middle region of the root cortex. The root endophyte possesses hyphae which are septate and vesicles. The vesicles are spherical and are continuous with that of the hyphae. The endophyte fine structure is similar to otherFrankia-induced root nodules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号