首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Four polyhydroxylated and polyunsaturated furostanol glycosides (1-4), named caucasicosides A (1), B (2), C (3) and D (4), were isolated from the MeOH extract of the underground parts of Helleborus caucasicus, along with four spirostanol derivatives, a furostanol glycoside, a furospirostanol glycoside, 20-hydroxyecdysone and the bufadienolides hellebrigenin and deglucohellebrin. The structures of 1-4 were elucidated as furosta-5,20(22),25(27)-triene-1beta,3beta,11alpha,26-tetrol 26-O-beta-D-glucopyranoside (1), 26-O-beta-D-glucopyranosylfurosta-5,20(22),25(27)-triene-1beta,3beta,11alpha,26-tetrol 3-O-alpha-L-rhamnopyranosyl-(1-->2)-beta-D-glucopyranoside (2), 26-O-beta-d-glucopyranosyl-22alpha-methoxyfurosta-5,25(27)-diene-1beta,3beta,11alpha,26-tetrol 3-O-alpha-L-rhamnopyranosyl-(1-->2)-beta-D-glucopyranoside (3), 26-O-beta-D-glucopyranosylfurosta-5,20(22),25(27)-triene-1beta,3beta,26-triol 3-O-beta-D-xylopyranosyl-(1-->3)-alpha-L-rhamnopyranosyl-(1-->2)-4-O-sulfo-alpha-L-arabinopyranoside (4). Structure elucidation was accomplished through the extensive use of 1D- and 2D NMR experiments including 1H-1H (COSY, 1D-TOCSY) and 1H-13C (HSQC, HMBC) spectroscopy along with ESI-MS and HR-ESI-MS. The aglycones of 1-4 have never been reported before.  相似文献   

2.
Nine furostanol glycosides, namely caucasicosides E-M, were isolated from the MeOH extract of the leaves of Helleborus caucasicus, along with 11 known compounds including nine furostanol glycosides, a bufadienolide and an ecdysteroid. Their structures were established by the extensive use of 1D and 2D NMR experiments along with ESIMSn analyses. The steroidal composition of leaves of H. caucasicus shows as particular feature the occurrence of steroidal compounds belonging to the 5β series, unusual for Helleborus species, and in particular, caucasicosides F-H are based on a 5β-polyhydroxylated steroidal aglycon never reported before.  相似文献   

3.
Two new and one known furostanol saponins were isolated from the rhizomes of Yucca gloriosa. The structures of the isolated compounds were established by detailed spectroscopic analysis (1D-, 2D NMR, ESI-MS, HR-MALDI-MS). The glycosidic profile of Y. gloriosa in comparison to that of Yucca schidigera, the well known commercial source of saponins, is briefly discussed. The similarity between the two species regarding the high steroidal content suggests that it might be possible to use Y. gloriosa for the same applications as Y. schidigera.  相似文献   

4.
The rhizome of Dioscorea japonica is a food and medicinal source known as ‘San Yak’ in Korea. Two new furostanol saponins, coreajaponins A (1) and B (2), together with 10 known compounds (3-12) were isolated from the rhizomes of D. japonica. Their structures were determined by spectroscopic methods, including 1D and 2D NMR techniques, HRMS, and chemical methods. Nerve growth factor (NGF), a crucial factor for neuronal survival and differentiation, can potentially improve neurodegenerative diseases and diabetic polyneuropathy. We evaluated the effects of isolates (1-12) on NGF induction in a C6 rat glioma cell line. Coreajaponin B (2) upregulated NGF content without significant cell toxicity, as did 6, 8, 9, and 11.  相似文献   

5.
Gao H  Wang Z 《Phytochemistry》2006,67(24):2697-2705
A detailed phytochemical study on the 70% aqueous ethanol extract of stems of Akebia trifoliata (Thunb.) Koidz. var. australis (Diels) Rehd led to isolation of five compounds, together with 12 known triterpenoid saponins and three known phenylethanoid glycosides. The structures of the five compounds were elucidated on the basis of analysis of spectroscopic data and physicochemical properties as: 2alpha, 3beta, 23-trihydroxy-30-norolean-12-en-28-oic acid beta-D-glucopyranosyl ester (1), 2alpha, 3beta, 23-trihydroxy-30-norolean-12-en-28-oic acid beta-D-xylopyranosyl-(1-->3)-O-alpha-D-rhamnopyranosyl-(1-->4)-O-beta-D-glucopyranosyl-(1-->6)-O-beta-D-glucopyranosyl ester (2), 2alpha, 3beta, 23-trihydroxyurs-12-en-28-oic acid beta-D-xylopyranosyl-(1-->3)-O-alpha-L-rhamnopyranosyl-(1-->4)-O-beta-D-glucopyranosyl-(1-->6)-O-beta-D-glucopyranosyl ester (3), 3-beta-[(beta-D-glucopyranosyl-(1-->3)-O-alpha-L-arabinopyranosyl)oxy]-23-hydroxy-30-norolean-12-en-28-oic acid alpha-L-rhamnopyranosyl-(1-->4)-O-beta-D-glucopyranosyl-(1-->6)-O-beta-D-glucopyranosyl ester (4) and 3-beta-[(alpha-L-xylopyranosyl-(1-->2)-O-alpha-L-arabinopyranosyl)oxy]-30-norolean-12-en-28-oic acid alpha-L-rhamnopyranosyl-(1-->4)-O-beta-D-glucopyranosyl-(1-->6)-O-beta-D-glucopyranosyl ester (5), named mutongsaponin A, B, C, D and E, respectively.  相似文献   

6.
Thirteen steroidal saponins were isolated from the leaves of Beaucarnea recurvata Lem. Their structures were established using one- and two-dimensional NMR spectroscopy and mass spectrometry. Six of them were identified as: 26-O-β-d-glucopyranosyl (25S)-furosta-5,20(22)-diene 1β,3β,26-triol 1-O-α-l-rhamnopyranosyl-(1 → 2) β-d-fucopyranoside, 26-O-β-d-glucopyranosyl (25S)-furosta-5,20(22)-diene 1β,3β,26-triol 1-O-α-l-rhamnopyranosyl-(1 → 2)-4-O-acetyl-β-d-fucopyranoside, 26-O-β-d-glucopyranosyl (25R)-furosta-5,20(22)-diene-23-one-1β,3β,26-triol 1-O-α-l-rhamnopyranosyl-(1 → 2) β-d-fucopyranoside, 26-O-β-d-glucopyranosyl (25S)-furosta-5-ene-1β,3β,22α,26-tetrol 1-O-α-l-rhamnopyranosyl-(1 → 4)-6-O-acetyl-β-d-glucopyranoside, 26-O-β-d-glucopyranosyl (25S)-furosta-5-ene-1β,3β,22α,26-tetrol 1-O-α-l-rhamnopyranosyl-(1 → 2) β-d-fucopyranoside, and 24-O-β-d-glucopyranosyl (25R)-spirost-5-ene-1β,3β,24-triol 1-O-α-l-rhamnopyranosyl-(1 → 2)-4-O-acetyl-β-d-fucopyranoside. The chemotaxonomic classification of B. recurvata in the family Ruscaceae was discussed.  相似文献   

7.
Four new flavonol gycosides: kaempferide 3-O-beta-xylosyl (1-->2)-beta-glucoside, kaempferol 3-O-alpha-rhamnoside-7,4'-di-O-beta-galactoside, kaempferol 3,7,4'-tri-O-beta-glucoside and quercetin 3-O-[alpha-rhamnosyl (1-->6)] [beta-glucosyl (1-->2)]-beta-glucoside-7-O-alpha-rhamnoside, were characterized from a methanolic leaf extract of Warburgia ugandensis. The known flavonols: kaempferol, kaempferol 3-rhamnoside, kaempferol 3-rutinoside, myricetin, quercetin 3-rhamnoside, kaempferol 3-arabinoside, quercetin 3-glucoside, quercetin, kaempferol 3-rhamnoside-4'-galactoside, myricetin 3-galactoside and kaempferol 3-glucoside were also isolated. Structures were established by spectroscopic and chemical methods and by comparison with authentic samples.  相似文献   

8.
In the present phytochemical study on the leaves of Crataegus pinnatifida, a new monoterpene glycoside, (3S,5R,6R,7E,9R)-3,6-epoxy-7-megastigmen-5,9-diol-9-O-β-Dglucopyranoside(6) and a new sesquilignan glycoside, acernikol-4’’-O-β-D-glucopyranoside (15), together with thirteen known compounds were isolated.  相似文献   

9.
Seven steroidal glycosides, along with one known glycoside, were isolated from the rhizomes of Ruscus hypophyllum (Liliaceae). Comprehensive spectroscopic analysis, including 2D NMR spectroscopy, and the results of acid hydrolysis allowed the chemical structures of the compounds to be assigned as (23S,25R)-23-hydroxyspirost-5-en-3beta-yl O-alpha-l-rhamnopyranosyl-(1-->4)-beta-d-glucopyranoside (1), 1beta-hydroxyspirosta-5,25(27)-dien-3beta-yl O-alpha-l-rhamnopyranosyl-(1-->4)-beta-d-glucopyranoside (2), (22S)-16beta,22-dihydroxycholest-5-en-3beta-yl O-alpha-l-rhamnopyranosyl-(1-->4)-beta-d-glucopyranoside (3), (22S)-16beta-[(beta-d-glucopyranosyl)oxy]-22-hydroxycholest-5-en-3beta-yl O-alpha-l-rhamnopyranosyl-(1-->4)-beta-d-glucopyranoside (4), (22S)-16beta-[(beta-d-glucopyranosyl)oxy]-22-hydroxycholest-5-en-3beta-yl beta-d-glucopyranoside (5), (22S)-16beta-[(beta-d-glucopyranosyl)oxy]-3beta,22-dihydroxycholest-5-en-1beta-yl O-alpha-l-rhamnopyranosyl-(1-->2)-(3,4-di-O-acetyl-beta-d-xylopyranoside) (6), and (22S)-16beta-[(beta-d-glucopyranosyl)oxy]-3beta,22-dihydroxycholest-5-en-1beta-yl O-alpha-l-rhamnopyranosyl-(1-->2)-O-[beta-d-xylopyranosyl-(1-->3)]-beta-d-xylopyranoside (7), respectively. This is the first isolation of a series of cholestane glycosides from a Ruscus species.  相似文献   

10.
11.
An investigation of methanolic extract of Warburgia stuhlmannii leaves has led to the isolation of two new drimane-type sesquiterpene glycosides characterized as mukaadial 6-O-beta-D-glucopyranoside, mukaadial 6-O-alpha-L-rhamnopyranoside together with two other novel flavonol glycosides identified as 3',5'-O-dimethylmyricetin 3-O-beta-D-2",3"-diacetylglucopyranoside and 3'-O-methylquercetin 3-O-beta-D-2",3",4"-triacetylglucopyranoside. The known compounds; mukaadial, deacetylugandensolide, quercetin, kaempferol, kaempferol 3-O-alpha-L-rhamnopyranoside, quercetin 3-O-beta-D-glucopyranoside, kaempferol 7-O-beta-D-glucopyranoside, myricetin 3-O-alpha-L-rhamnopyranoside, quercetin 3-O-alpha-L-rhamnopyranoside, quercetin 3-O-sophoroside and isorhamnetin 3-O-beta-D-glucopyranoside were also isolated from the same extract.  相似文献   

12.
13.
Three acylated flavonol glycosides have been identified from leaves of Planchonia grandis Ridley. They possess kaempferol as aglycone and two triglycosidic chains substituting hydroxyl groups at the 3- and 7-positions. The first glycosidic unit of each chain is esterified by a cis or trans p-coumaric acid. Structural elucidation was achieved by means of UV, NMR and mass spectrometry.  相似文献   

14.
A beta-glucosidase (torvosidase) was purified to homogeneity from the young leaves of Solanum torvum. The enzyme was highly specific for cleavage of the glucose unit attached to the C-26 hydroxyl of furostanol glycosides from the same plant, namely torvosides A and H. Purified torvosidase is a monomeric glycoprotein, with a native molecular weight of 87 kDa by gel filtration and a pI of 8.8 by native agarose IEF. Optimum pH of the enzyme for p-nitrophenyl-beta-glucoside and torvoside H was 5.0. Kinetic studies showed that Km values for torvoside A (0.06 3mM) and torvoside H (0.068 mM) were much lower than those for synthetic substrates, pNP-beta-glucoside (1.03 mM) and 4-methylumbelliferyl-beta-glucoside (0.78 mM). The enzyme showed strict specificity for the beta-d-glucosyl bond when tested for glycone specificity. Torvosidase hydrolyses only torvosides and dalcochinin-8'-beta-glucoside, which is the natural substrate of Thai rosewood beta-glucosidase, but does not hydrolyse other natural substrates of the GH1 beta-glucosidases or of the GH3 beta-glucosidase families. Torvosidase also hydrolyses C5-C10 alkyl-beta-glucosides, with a rate of hydrolysis increasing with longer alkyl chain length. The internal peptide sequence of Solanum beta-glucosidase shows high similarity to the sequences of family GH3 glycosyl hydrolases.  相似文献   

15.
Four new triterpenoid saponins were isolated from the leaves and stem of branches of Dizygotheca kerchoveana along with seven known ones. The new saponins were respectively characterized as 3-O-[beta-D-glucopyranosyl-(1-->3)]-[beta-D-glucopyranosyl-(1-->2)]-alpha-L-arabinopyranosyl echinocystic acid, 3-O-[beta-D-glucopyranosyl-(1-->3)]-[beta-D-glucopyranosyl-(1-->2)]-alpha-L-arabinopyranosyl echinocystic acid 28-O-[alpha-L-rhamnopyranosyl-(1-->4)-beta-D-glucopyranosyl-(1-->6)-beta-D-glucopyranosyl] ester, 3-O-[beta-D-3-O-trans-p-coumaroyl-glucopyranosyl-(1-->3)]-[beta-D-glucopyranosyl-(1-->2)]-alpha-L-arabinopyranosyl echinocystic acid 28-O-[alpha-L-rhamnopyranosyl-(1-->4)-beta-D-glucopyranosyl-(1-->6)-beta-D-glucopyranosyl] ester and 3-O-[beta-d-3-O-cis-p-coumaroyl-glucopyranosyl-(1-->3)]-[beta-D-glucopyranosyl-(1-->2)]-alpha-L-arabinopyranosyl echinocystic acid 28-O-[alpha-L-rhamnopyranosyl-(1-->4)-beta-D-glucopyranosyl-(1-->6)-beta-D-glucopyranosyl] ester. Their structures were elucidated by 1D and 2D NMR experiments, FAB-MS as well as chemical means.  相似文献   

16.
Six steroidal glycosides (1-6) were isolated from the aerial parts of Tribulus alatus Del. (Zygophyllaceae), together with one known cholestane, one spirostane, and six flavonol glycosides. Among them, 1 and 2 possess a furostane-type aglycone, 3 and 6 a cholestane structure, and 4 and 5 a spirostane skeleton. Their structural elucidation was accomplished by extensive spectroscopic methods including 1D ((1)H, (13)C, (13)C DEPT, TOCSY, ROESY) and 2D NMR experiments (DQF-COSY, HSQC, HMBC) as well as ESI-MS analysis.  相似文献   

17.
18.
Phytochemical investigation of the whole plants of Agave utahensis Engelm. (Agavaceae) has resulted in the isolation of 15 steroidal saponins (1-15), including five spirostanol saponins (1-5) and three furostanol saponins (11-13). Structures of compounds 1-5 and 11-13 were determined by spectroscopic analysis and the results of hydrolytic cleavage. The isolated compounds were evaluated for their cytotoxic activity against HL-60 human promyelocytic leukemia cells.  相似文献   

19.
Yokosuka A  Mimaki Y  Sakuma C  Sashida Y 《Steroids》2005,70(4):257-265
Seven new glycosides of the campesterol derivative (24R,25S)-ergost-5-ene-3beta,26-diol (1-7) were isolated from the rhizomes of Tacca chantrieri (Taccaceae). Their structures were determined by extensive spectroscopic analysis, including 2D NMR data, and a few chemical transformations.  相似文献   

20.
Thirteen oleanane saponins (1-13), four of which were new compounds (1-4), were isolated from Pteleopsis suberosa Engl. et Diels stem bark (Combretaceae). Their structures were determined by 1D and 2D NMR spectroscopy and ESI-MS spectrometry. The compounds were identified as 2alpha,3beta,19alpha,23,24-pentahydroxy-11-oxo-olean-12-en-28-oic acid 28-O-beta-D-glucopyranosyl ester (1), 2alpha,3beta,19beta,23,24-pentahydroxy-11-oxo-olean-12-en-28-oic acid 28-O-beta-D-glucopyranosyl ester (2), 2alpha,3beta,19alpha,23-tetrahydroxy-11-oxo-olean-12-en-28-oic acid 28-O-beta-D-glucopyranosyl ester (3), and 2alpha,3beta,6beta,19alpha,24-pentahydroxy-11-oxo-olean-12- en-28-oic acid 28-O-beta-D-glucopyranosyl ester (4). The presence of alpha,beta-unsaturated carbonyl function was not common in the oleanane class and the aglycons of these compounds were not found previously in the literature. Moreover, the isolated compounds were tested against Helicobacter pylori standard and vacA, and cagA clinical virulence genotypes. Results showed that compound 6 has an anti-H. pylori activity against three metronidazole-resistant strains (Ci 1 cagA, Ci 2 vacA, and Ci 3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号