首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Research   总被引:1,自引:0,他引:1  
Gram-positive bacterium Streptococcus gordonii, a human oral commensal, was engineered to display a single-chain Fv (scFv) antibody fragment at the cell surface. The previously developed host-vector system allowed expression of the Guy’s 13 scFv as a fusion with the streptococcal surface protein M6. Surface expression of the 515-amino acid M6/scFv fusion protein was confirmed by Western blot analysis on cellular fractions and flow cytometric analysis. Guy’s 13 scFv was derived from the Guy’s 13 monoclonal antibody, which was raised against streptococcal antigen I/II (SA I/II), the major adhesin of the caries-producing bacterium Streptococcus mutans. Surface plasmon resonance was used to test binding of scFv-expressing S. gordonii to SA I/II. Whole cells of recombinant S. gordonii were found to specifically bind to immobilised SA I/II and binding was inhibited by fluid-phase SA I/II in a dose-dependent manner. Production of a functional scFv in S. gordonii is the first step towards the development of genetically engineered commensal bacteria that, by colonizing mucosal surfaces, may provide the host with sustained delivery of recombinant antibodies.  相似文献   

2.

Background  

Glucosyltransferases (Gtfs), enzymes that produce extracellular glucans from dietary sucrose, contribute to dental plaque formation byStreptococcus gordoniiandStreptococcus mutans. The alpha-amylase-binding protein A (AbpA) ofS. gordonii, an early colonizing bacterium in dental plaque, interacts with salivary amylase and may influence dental plaque formation by this organism. We examined the interaction of amylase and recombinant AbpA (rAbpA), together with Gtfs ofS. gordoniiandS. mutans.  相似文献   

3.
The Antigen I/II (AgI/II) family of proteins are cell wall anchored adhesins expressed on the surface of oral streptococci. The AgI/II proteins interact with molecules on other bacteria, on the surface of host cells, and with salivary proteins. Streptococcus gordonii is a commensal bacterium, and one of the primary colonizers that initiate the formation of the oral biofilm. S. gordonii expresses two AgI/II proteins, SspA and SspB that are closely related. One of the domains of SspB, called the variable (V‐) domain, is significantly different from corresponding domains in SspA and all other AgI/II proteins. As a first step to elucidate the differences among these proteins, we have determined the crystal structure of the V‐domain from S. gordonii SspB at 2.3 Å resolution. The domain comprises a β‐supersandwich with a putative binding cleft stabilized by a metal ion. The overall structure of the SspB V‐domain is similar to the previously reported V‐domain of the Streptococcus mutans protein SpaP, despite their low sequence similarity. In spite of the conserved architecture of the binding cleft, the cavity is significantly smaller in SspB, which may provide clues about the difference in ligand specificity. We also verified that the metal in the binding cleft is a calcium ion, in concurrence with previous biological data. It was previously suggested that AgI/II V‐domains are carbohydrate binding. However, we tested that hypothesis by screening the SspB V‐domain for binding to over 400 glycoconjucates and found that the domain does not interact with any of the carbohydrates.  相似文献   

4.
A nontoxic mutant diphtheria toxin fragment A (DTA) was genetically fused in single, double, or triple copy to the major surface protein antigen P1 (SpaP) and surface expressed in Streptococcus gordonii DL-1. The expression was verified by Western immunoblotting. Mouse antisera raised against the recombinant S. gordonii recognized the native diphtheria toxinm suggesting the recombinant DTA was immunogenic. When given intranasally to mice with cholera toxin subunit B as the adjuvant, the recombinant S. gordonii expressing double copies of DTA (SpaP-DTA2) induced a mucosal immunoglobulin A response and a weak systemic immunoglobulin G response. S. gordonii SpaP-DTA2 was able to orally colonize BALB/c mice for a 15-week period and elicited a mucosal response, but a serum immunoglobulin G response was not apparent. The antisera failed to neutralize diphtheria toxin cytotoxicity in a Vero cell assay.  相似文献   

5.
Streptococcus gordonii DL1 (Challis) bears coaggregation-mediating surface adhesins which recognize galactoside-containing surface polysaccharides onStreptococcus oralis 34,Streptococcus oralis C104, andStreptococcus SM PK509. Fifty-nine spontaneously-occurring coaggregation-defective (Cog) mutants ofS. gordonii DL1 unable to coaggregate with partner streptococci were isolated. Six representative Cog mutants were characterized by their coaggregation properties with fourActinomyces naeslundii strains (T14V, PK947, PK606, PK984),Veillonella atypica PK1910, andPropionibacterium acnes PK93. The six representative Cog mutants showed altered coaggregation with their streptococcal partners,A. naeslundii PK947, andP. acnes PK93. Based on the coaggregation phenotypes of these mutants, a model for the lactose-inhibitable coaggregation betweenS. gordonii DL1 and its partner bacteria is proposed. The potential use of these mutants in studies of oral biofilms is discussed.  相似文献   

6.
To display a protein or peptide with a distinct function at the surface of a living bacterial cell is a challenging exercise with constantly increasing impact in many areas of biochemistry and biotechnology. Among other systems in Gram-negative bacteria, the Autodisplay system provides striking advantages when used to express a recombinant protein at the surface of Escherichia coli or related bacteria. The Autodisplay system has been developed on the basis of and by exploiting the natural secretion mechanism of the AIDA-I autotransporter protein. It offers the expression of more than 105 recombinant molecules per single cell, permits the multimerization of subunits expressed from monomeric genes at the cell surface, and allows, after transport of an apoprotein to the cell surface, the incorporation of an inorganic prosthetic group without disturbing cell integrity or cell viability. Moreover, whole cells displaying recombinant proteins by Autodisplay can be subjected to high-throughput screening (HTS) methods such as ELISA or FACS, thus enabling the screening of surface display libraries and providing access to directed evolution of the recombinant protein displayed at the cell surface. In this review, the application of the Autodisplay system for the surface display of enzymes, enzyme inhibitors, epitopes, antigens, protein and peptide libraries is summarised and the perspectives of the system are discussed.  相似文献   

7.
A range of Streptococcus bacteria are able to interact with blood platelets to form a thrombus (clot). Streptococcus gordonii is ubiquitous within the human oral cavity and amongst the common pathogens isolated from subjects with infective endocarditis. Two cell surface proteins, Hsa and Platelet adherence protein A (PadA), in S. gordonii mediate adherence and activation of platelets. In this study, we demonstrate that PadA binds activated platelets and that an NGR (Asparagine‐Glycine‐Arginine) motif within a 657 amino acid residue N‐terminal fragment of PadA is responsible for this, together with two other integrin‐like recognition motifs RGT and AGD. PadA also acts in concert with Hsa to mediate binding of S. gordonii to cellular fibronectin and vitronectin, and to promote formation of biofilms. Evidence is presented that PadA and Hsa are each reliant on the other's active presentation on the bacterial cell surface, suggesting cooperativity in functions impacting both colonization and pathogenesis.  相似文献   

8.
One of the most important branches of genetic engineering is the expression of recombinant proteins using biological expression systems. Nowadays, different expression systems are used for the production of recombinant proteins including bacteria, yeasts, molds, mammals, plants, and insects. Yeast expression systems such as Saccharomyces cerevisiae (S. cerevisiae) and Pichia pastoris (P. pastoris) are more popular. P. pastoris expression system is one of the most popular and standard tools for the production of recombinant protein in molecular biology. Overall, the benefits of protein production by P. pastoris system include appropriate folding (in the endoplasmic reticulum) and secretion (by Kex2 as signal peptidase) of recombinant proteins to the external environment of the cell. Moreover, in the P. pastoris expression system due to its limited production of endogenous secretory proteins, the purification of recombinant protein is easy. It is also considered a unique host for the expression of subunit vaccines which could significantly affect the growing market of medical biotechnology. Although P. pastoris expression systems are impressive and easy to use with well-defined process protocols, some degree of process optimization is required to achieve maximum production of the target proteins. Methanol and sorbitol concentration, Mut forms, temperature and incubation time have to be adjusted to obtain optimal conditions, which might vary among different strains and externally expressed protein. Eventually, optimal conditions for the production of a recombinant protein in P. pastoris expression system differ according to the target protein.  相似文献   

9.

Background  

Escherichia coli is frequently the first-choice host organism in expression of heterologous recombinant proteins in basic research as well as in production of commercial, therapeutic polypeptides. Especially the secretion of proteins into the culture medium of E. coli is advantageous compared to intracellular production due to the ease in recovery of the recombinant protein. Since E. coli naturally is a poor secretor of proteins, a few strategies for optimization of extracellular secretion have been described. We have previously reported efficient secretion of the diagnostically interesting model protein Peb1 of Campylobacter jejuni into the growth medium of Escherichia coli strain MKS12 (ΔfliCfliD). To generate a more detailed understanding of the molecular mechanisms behind this interesting heterologous secretion system with biotechnological implications, we here analyzed further the transport of Peb1 in the E. coli host.  相似文献   

10.
Bacterial binding to human platelets is an important step in the pathogenesis of infective endocarditis. Streptococcus gordonii can mediate its platelet attachment through a cell wall glycoprotein termed GspB (‘gordonii surface protein B’). GspB export is mediated by a seven‐component accessory Sec system, containing two homologues of the general secretory pathway (SecA2 and SecY2) and five accessory Sec proteins (Asps1–5). Here we show that the Asps are required for optimal export of GspB independent of the glycosylation process. Furthermore, yeast two‐hybrid screening of the accessory Sec system revealed interactions occurring between Asp3 and the other components of the system. Asp3 was shown to bind SecA2, Asp1, Asp2 and itself. Mutagenesis of Asp3 identified N‐ and C‐terminal regions that are essential for GspB transport, and conserved residues within the C‐terminal domain mediated Asp3 binding to other accessory Sec components. The loss of binding by Asp3 also resulted in an impaired ability of S. gordonii to secrete GspB. These studies indicate that Asp3 is a central element mediating multiple interactions among accessory Sec components that are essential for GspB transport to the cell surface.  相似文献   

11.
Human serum albumin (HSA) is the most widely used clinical serum protein. Currently, commercial HSA can only be obtained from human plasma, due to lack of commercially feasible recombinant protein expression systems. In this study, inducible expression and secretion of HSA by transformed rice suspension cell culture was established. Mature form of HSA was expressed under the control of the sucrose starvation-inducible rice α Amy3 promoter, and secretion of HSA into the culture medium was achieved by using the α Amy3 signal sequence. High concentrations of HSA were secreted into culture medium in a short time (2–4 days) by sucrose depletion after cell concentrations had reached a peak density in culture medium containing sucrose. The recombinant HSA had the same electrophoretic mobility as commercial HSA and was stable and free from apparent proteolysis in the culture medium. In a flask scale culture with repeated sucrose provision-depletion cycles, HSA was stably produced with yields up to 11.5% of total medium proteins or 15 mg/L per cycle after each sucrose provision-depletion cycle. A bubble column type bioreactor was designed for production of HSA. In the bioreactor scale culture, HSA was produced with yields up to 76.4 mg/L 4 days after sucrose depletion. HSA was purified from the culture medium to high purity by a simple purification scheme. Enrichment of HSA in culture medium simplifies downstream purification, minimizes protease degradation, and may reduce production cost. The combination of a DNA construct containing the α Amy3 promoter and signal sequence, and the use of a rice suspension cell culture can provide an effective system for the production of recombinant pharmaceutical proteins.  相似文献   

12.
Streptococcus gordonii is one of the predominant streptococci in the biofilm ecology of the oral cavity. It interacts with other bacteria through receptor-adhesin complexes formed between cognate molecules on the surfaces of the partner cells. To study the spatial organization of S. gordonii DL1 in oral biofilms, we used green fluorescent protein (GFP) as a species-specific marker to identify S. gordonii in a two-species in vitro oral biofilm flowcell system. To drive expression of gfp, we isolated and characterized an endogenous S. gordonii promoter, PhppA, which is situated upstream of the chromosomal hppA gene encoding an oligopeptide-binding lipoprotein. A chromosomal chloramphenicol acetyltransferase (cat) gene fusion with PhppA was constructed and used to demonstrate that PhppA was highly active throughout the growth of bacteria in batch culture. A promoterless 0.8-kb gfp (′gfp) cassette was PCR amplified from pBJ169 and subcloned to replace the cat cassette downstream of the S. gordonii-derived PhppA in pMH109-HPP, generating pMA1. Subsequently, the PhppA-′gfp cassette was PCR amplified from pMA1 and subcloned into pDL277 and pVA838 to generate the Escherichia coli-S. gordonii shuttle vectors pMA2 and pMA3, respectively. Each vector was transformed into S. gordonii DL1 aerobically to ensure GFP expression. Flow cytometric analyses of aerobically grown transformant cultures were performed over a 24-h period, and results showed that GFP could be successfully expressed in S. gordonii DL1 from PhppA and that S. gordonii DL1 transformed with the PhppA-′gfp fusion plasmid stably maintained the fluorescent phenotype. Fluorescent S. gordonii DL1 transformants were used to elucidate the spatial arrangement of S. gordonii DL1 alone in biofilms or with the coadhesion partner Streptococcus oralis 34 in two-species biofilms in a saliva-conditioned in vitro flowcell system. These results show for the first time that GFP expression in oral streptococci can be used as a species-specific marker in model oral biofilms.  相似文献   

13.

Background  

Extracellular expression of proteins has an absolute advantage in a large-scale industrial production. In our previous study, Thermobifida fusca cutinase, an enzyme mainly utilized in textile industry, was expressed via type II secretory system in Escherichia coli BL21(DE3), and it was found that parts of the expressed protein was accumulated in the periplasmic space. Due to the fact that alpha-hemolysin secretion system can export target proteins directly from cytoplasm across both cell membrane of E. coli to the culture medium, thus in the present study we investigated the expression of cutinase using this alpha-hemolysin secretion system.  相似文献   

14.
A gram-positive bacterial expression vector using Streptococcus gordonii has been developed for expression and secretion, or surface anchoring of heterologous proteins. This system, termed Surface Protein Expression system or SPEX, has been used to express a variety of surface anchored and secreted proteins. In this study, the Mycobacterium xenopi (Mxe) GyrA intein and chitin binding domain from Bacillus circulans chitinase Al were used in conjunction with SPEX to express a fusion protein to facilitate secretion, cleavage, and purification. Streptococcus gordonii was transformed to express a secreted fusion protein consisting of a target protein with a C-terminal intein and chitin-binding domain. Two target proteins, the C-repeat region of the Streptococcus pyogenes M6 protein (M6) and the nuclease A (NucA) enzyme of Staphylococcus aureus, were expressed and tested for intein cleavage. The secreted fusion proteins were purified from culture medium by binding to chitin beads and subjected to reaction conditions to induce intein self-cleavage to release the target protein. The M6 and NucA fusion proteins were shown to bind chitin beads and elute under cleavage reaction conditions. In addition, NucA demonstrated enzyme activity both before and after intein cleavage.  相似文献   

15.
Gram-negative bacteria are attractive hosts for recombinant protein production because they are fast growing, easy to manipulate, and genetically stable in large cultures. However, the utility of these microbes would expand if they also could secrete the product at commercial scales. Secretion of biotechnologically relevant proteins into the extracellular medium increases product purity from cell culture, decreases downstream processing requirements, and reduces overall cost. Thus, researchers are devoting significant attention to engineering Gram-negative bacteria to secrete recombinant proteins to the extracellular medium. Secretion from these bacteria operates through highly specialized systems, which are able to translocate proteins from the cytosol to the extracellular medium in either one or two steps. Building on past successes, researchers continue to increase the secretion efficiency and titer through these systems in an effort to make them viable for industrial production. Efforts include modifying the secretion tags required for recombinant protein secretion, developing methods to screen or select rapidly for clones with higher titer or efficiency, and improving reliability and robustness of high titer secretion through genetic manipulations. An additional focus is the expression of secretion machineries from pathogenic bacteria in the “workhorse” of biotechnology, Escherichia coli, to reduce handling of pathogenic strains. This review will cover recent advances toward the development of high-expressing, high-secreting Gram-negative production strains.  相似文献   

16.
Production of pediocin in Pediococcus acidilactici is associated with pMBR1.0, which encodes prepediocin, a pediocin immunity protein, and two proteins involved in secretion and precursor processing. These four genes are organized as an operon under control of a single promoter. We have constructed shuttle vectors that contain all four structural genes, the chromosomal promoter STP2201 from Streptococcus thermophilus, and repA from the 2-kbp S. thermophilus plasmid pER8. The recombinant plasmid, pPC318, expressed and secreted active pediocin in Escherichia coli. Streptococcus thermophilus, Lactococcus lactis subsp. lactis, and Enterococcus faecalis were electrotransformed with pPC418, a modified vector fitted with an erythromycin resistance tracking gene. Pediocin was produced and secreted in each of the lactic acid bacteria, and production was stable for up to ten passages. The expression of pediocin in dairy fermentation microbes has important implications for bacteriocins as food preservatives in dairy products. Received: 7 June 1999 / Accepted: 6 July 1999  相似文献   

17.
18.
The Type VII protein secretion system, found in Gram‐positive bacteria, secretes small proteins, containing a conserved W‐x‐G amino acid sequence motif, to the growth medium. Staphylococcus aureus has a conserved Type VII secretion system, termed Ess, which is dispensable for laboratory growth but required for virulence. In this study we show that there are unexpected differences in the organization of the ess gene cluster between closely related strains of S. aureus. We further show that in laboratory growth medium different strains of S. aureus secrete the EsxA and EsxC substrate proteins at different growth points, and that the Ess system in strain Newman is inactive under these conditions. Systematic deletion analysis in S. aureus RN6390 is consistent with the EsaA, EsaB, EssA, EssB, EssC and EsxA proteins comprising core components of the secretion machinery in this strain. Finally we demonstrate that the Ess secretion machinery of two S. aureus strains, RN6390 and COL, is important for nasal colonization and virulence in the murine lung pneumonia model. Surprisingly, however, the secretion system plays no role in the virulence of strain SA113 under the same conditions.  相似文献   

19.
Gram-positive bacteria are widely used to produce recombinant proteins, amino acids, organic acids, higher alcohols, and polymers. Many proteins have been expressed in Gram-positive hosts such as Corynebacterium, Brevibacterium, and Streptomyces. The favorable and advantageous characteristics (e.g., high secretion capacity and efficient production of metabolic products) of these species have increased the biotechnological applications of bacteria. However, owing to multiplicity from genes encoding the proteins and expression hosts, the expression of recombinant proteins is limited in Gram-positive bacteria. Because there is a very recent review about protein expression in Bacillus subtilis, here we summarize recent strategies for efficient expression of recombinant proteins in the other three typical Gram-positive bacteria (Corynebacterium, Brevibacterium, and Streptomyces) and discuss future prospects. We hope that this review will contribute to the development of recombinant protein expression in Corynebacterium, Brevibacterium, and Streptomyces.  相似文献   

20.

Background  

Chlamydial bacteria are obligate intracellular pathogens containing a cysteine-rich porin (Major Outer Membrane Protein, MOMP) with important structural and, in many species, immunity-related roles. MOMP forms extensive disulphide bonds with other chlamydial proteins, and is difficult to purify. Leaderless, recombinant MOMPs expressed in E. coli have yet to be refolded from inclusion bodies, and although leadered MOMP can be expressed in E. coli cells, it often misfolds and aggregates. We aimed to improve the surface expression of correctly folded MOMP to investigate the membrane topology of the protein, and provide a system to display native and modified MOMP epitopes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号