首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Lee S  Chen J  Zhou G  Wang SM 《BioTechniques》2001,31(2):348-50, 352-4
The serial analysis of gene expression (SAGE) technique is an important tool for genome-wide gene expression analysis. However, the requirement of a large amount of mRNA for the analysis and the difficulties in generating high-quality tag and ditag fragments for the construction of a SAGE library often interfere with the successful performance of the SAGE technique. We developed two procedures to solve these issues: (i) introducing low-cycle PCR amplification of the 3' cDNA before the BsmFI digestion of the 3' cDNAs and (ii) gel purifying the BsmFI-released tag fragments before ditag formation. These modifications provide a large quantity of initial 3' cDNAs and high-quality tags and ditags for the construction of SAGE libraries.  相似文献   

3.
Lee S  Clark T  Chen J  Zhou G  Scott LR  Rowley JD  Wang SM 《Genomics》2002,79(4):598-602
SAGE (serial analysis of gene expression) is a remarkable technique for genome-wide analysis of gene expression. It is crucial to understand the extent to which SAGE can accurately indicate a gene or expressed sequence tag (EST) with a single tag. We analyzed the effect of the size of SAGE tag on gene identification. Our observation indicates that SAGE tags are in general not long enough to achieve the degree of uniqueness of identification originally envisaged. Our observations also indicate that the limitation of using SAGE tag to identify a gene can be overcome by converting SAGE tags into longer 3' EST sequences with the generation of longer cDNA fragments from SAGE tages for gene identification (GLGI) method.  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
卢汀 《生物信息学》2014,12(2):140-144
基因的差异化表达由多种因素共同导致,并且与许多疾病的发生和发展有密切联系,对差异化表达的基因进行生物信息学以及生物统计学的分析对于研究细胞调节机制和疾病机理有着重要意义。目前,对差异化表达的基因有以下几种主流的研究方法:DNA微阵列(DNA microarray),抑制性消减杂交(SSH),基因表达连续性分析(SAGE),代表性差异分析(RDA),以及mRNA差异显示PCR(mRNA DDRT-PCR)。目前许多基因差异化表达数据是建立在时段(time series)基础上,因此对基于时间变化的基因差异化表达分析变得尤为重要。本文将对差异化表达基因的几种主流方法进行详细阐述,并介绍一种基于傅里叶函数的时段基因差异化表达分析。  相似文献   

12.
13.
14.
15.
16.
Serial analysis of gene expression (SAGE) is a technology for quantifying gene expression in biological tissue that yields count data that can be modeled by a multinomial distribution with two characteristics: skewness in the relative frequencies and small sample size relative to the dimension. As a result of these characteristics, a given SAGE sample may fail to capture a large number of expressed mRNA species present in the tissue. Empirical estimators of mRNA species' relative abundance effectively ignore these missing species, and as a result tend to overestimate the abundance of the scarce observed species comprising a vast majority of the total. We have developed a new Bayesian estimation procedure that quantifies our prior information about these characteristics, yielding a nonlinear shrinkage estimator with efficiency advantages over the MLE. Our prior is mixture of Dirichlets, whereby species are stochastically partitioned into abundant and scarce classes, each with its own multivariate prior. Simulation studies reveal our estimator has lower integrated mean squared error (IMSE) than the MLE for the SAGE scenarios simulated, and yields relative abundance profiles closer in Euclidean distance to the truth for all samples simulated. We apply our method to a SAGE library of normal colon tissue, and discuss its implications for assessing differential expression.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号