首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This protocol describes regular care and maintenance of a zebrafish laboratory. Zebrafish are now gaining popularity in genetics, pharmacological and behavioural research. As a vertebrate, zebrafish share considerable genetic sequence similarity with humans and are being used as an animal model for various human disease conditions. The advantages of zebrafish in comparison to other common vertebrate models include high fecundity, low maintenance cost, transparent embryos, and rapid development. Due to the spur of interest in zebrafish research, the need to establish and maintain a productive zebrafish housing facility is also increasing. Although literature is available for the maintenance of a zebrafish laboratory, a concise video protocol is lacking. This video illustrates the protocol for regular housing, feeding, breeding and raising of zebrafish larvae. This process will help researchers to understand the natural behaviour and optimal conditions of zebrafish husbandry and hence troubleshoot experimental issues that originate from the fish husbandry conditions. This protocol will be of immense help to researchers planning to establish a zebrafish laboratory, and also to graduate students who are intending to use zebrafish as an animal model.  相似文献   

2.
李辉辉  黄萍  董巍  朱作言  刘东 《遗传》2013,35(4):410-420
1972年美国俄勒冈大学George Streisinger教授开始研究斑马鱼(Danio rerio)至今, 斑马鱼以其独特的优点, 已经成为现代遗传学、发育生物学研究的重要模式动物。世界范围内斑马鱼研究群体的工作已奠定了较为完善的胚胎学、分子遗传学研究基础, 并且斑马鱼已被应用于开发人类重大疾病模型和药物筛选平台, 取得了许多有价值的研究成果。文章简述了斑马鱼成为模式动物的历史, 侧重介绍了业已建立的白血病、黑色素瘤、感染免疫疾病、神经疾病等斑马鱼模型, 以及利用斑马鱼进行小分子化合物/药物筛选和研发的现状。斑马鱼研究向生物医学方向的拓展, 必将为人类理解重大疾病发生机制、寻找疾病治疗方法, 为维护人类卫生、健康做出贡献。  相似文献   

3.
Ya-juan Li  Bing Hu 《遗传学报》2012,39(9):521-534
Zebrafish(Danio rerio) is an ideal model for studying the mechanism of infectious disease and the interaction between host and pathogen.As a teleost,zebrafish has developed a complete immune system which is similar to mammals.Moreover,the easy acquirement of large amounts of transparent embryos makes it a good candidate for gene manipulation and drug screening.In a zebrafish infection model,all of the site,timing,and dose of the bacteria microinjection into the embryo are important factors that determine the bacterial infection of host.Here,we established a multi-site infection model in zebrafish larvae of 36 hours post-fertilization(hpf) by micro-injecting wild-type or GFP-expressing Staphylococcus aereus(5.aureus) with gradient burdens into different embryo sites including the pericardial cavity(PC),eye,the fourth hindbrain ventricle(4V),yolk circulation valley(YCV),caudal vein(CV),yolk body(YB),and Duct of Cuvier(DC) to resemble human infectious disease.With the combination of GFP-expressing S.aureus and transgenic zebrafish Tg(corola:eGFP;lyz:Dsred) and Tg(lyz:Dsred) lines whose macrophages or neutrophils are fluorescent labeled,we observed the dynamic process of bacterial infection by in vivo multicolored confocal fluorescence imaging.Analyses of zebrafish embryo survival, bacterial proliferation and myeloid cells phagocytosis show that the site- and dose-dependent differences exist in infection of different bacterial entry routes.This work provides a consideration for the future study of pathogenesis and host resistance through selection of multi-site infection model.More interaction mechanisms between pathogenic bacteria virulence factors and the immune responses of zebrafish could be determined through zebrafish multi-site infection model.  相似文献   

4.
5.
Seasonal influenza virus infections cause annual epidemics and sporadic pandemics. These present a global health concern, resulting in substantial morbidity, mortality and economic burdens. Prevention and treatment of influenza illness is difficult due to the high mutation rate of the virus, the emergence of new virus strains and increasing antiviral resistance. Animal models of influenza infection are crucial to our gaining a better understanding of the pathogenesis of and host response to influenza infection, and for screening antiviral compounds. However, the current animal models used for influenza research are not amenable to visualization of host-pathogen interactions or high-throughput drug screening. The zebrafish is widely recognized as a valuable model system for infectious disease research and therapeutic drug testing. Here, we describe a zebrafish model for human influenza A virus (IAV) infection and show that zebrafish embryos are susceptible to challenge with both influenza A strains APR8 and X-31 (Aichi). Influenza-infected zebrafish show an increase in viral burden and mortality over time. The expression of innate antiviral genes, the gross pathology and the histopathology in infected zebrafish recapitulate clinical symptoms of influenza infections in humans. This is the first time that zebrafish embryos have been infected with a fluorescent IAV in order to visualize infection in a live vertebrate host, revealing a pattern of vascular endothelial infection. Treatment of infected zebrafish with a known anti-influenza compound, Zanamivir, reduced mortality and the expression of a fluorescent viral gene product, demonstrating the validity of this model to screen for potential antiviral drugs. The zebrafish model system has provided invaluable insights into host-pathogen interactions for a range of infectious diseases. Here, we demonstrate a novel use of this species for IAV research. This model has great potential to advance our understanding of influenza infection and the associated host innate immune response.KEY WORDS: Influenza, Zebrafish, Virus, Innate immunity  相似文献   

6.
The zebrafish (Danio rerio) has become a widely used vertebrate model for bacterial, fungal, viral, and protozoan infections. Due to its genetic tractability, large clutch sizes, ease of manipulation, and optical transparency during early life stages, it is a particularly useful model to address questions about the cellular microbiology of host–microbe interactions. Although its use as a model for systemic infections, as well as infections localised to the hindbrain and swimbladder having been thoroughly reviewed, studies focusing on host–microbe interactions in the zebrafish gastrointestinal tract have been neglected. Here, we summarise recent findings regarding the developmental and immune biology of the gastrointestinal tract, drawing parallels to mammalian systems. We discuss the use of adult and larval zebrafish as models for gastrointestinal infections, and more generally, for studies of host–microbe interactions in the gut.  相似文献   

7.
The use of microarrays for the study of various aspects of fish physiology has seen a spectacular increase in recent years. From early studies with model species, such as zebrafish, to current studies with commercially important species, such as salmonids, catfish, carp, and flatfish, microarray technology has emerged as a key tool for understanding developmental processes as well as basic physiology. In addition, microarrays are being applied to the fields of ecotoxicology and nutrigenomics. A number of different platforms are now available, ranging from microarrays containing cDNA amplicons to oligomers of various sizes. High-density microarrays containing hundreds of thousands of distinct oligomers have been developed for zebrafish and catfish. As this exciting technology advances, so will our understanding of global gene expression in fish. Furthermore, lessons learned from this experimentally tractable group of organisms can also be applied to more advanced organisms such as humans.  相似文献   

8.
The past decade has witnessed a revolution in infectious disease research, fuelled by the accumulation of a huge amount of DNA sequence data. The avalanche of genome sequence information has largely promoted the development of comparative genomics, which exploits available genome sequences to perform either inter- or intra-species comparisons of bacterial genome contents, or performs comparisons between the human genome and those of other organisms. This review aims to summarize how comparative genomics is being extensively used in infectious disease research, such as in the studies to identify virulence determinants, antimicrobial drug targets, vaccine candidates and new markers for diagnostics. These applications hold considerable promise for alleviating the burden of infectious diseases in the coming years.  相似文献   

9.
Advances in swine biomedical model genomics   总被引:1,自引:0,他引:1  
This review is a short update on the diversity of swine biomedical models and the importance of genomics in their continued development. The swine has been used as a major mammalian model for human studies because of the similarity in size and physiology, and in organ development and disease progression. The pig model allows for deliberately timed studies, imaging of internal vessels and organs using standard human technologies, and collection of repeated peripheral samples and, at kill, detailed mucosal tissues. The ability to use pigs from the same litter, or cloned or transgenic pigs, facilitates comparative analyses and genetic mapping. The availability of numerous well defined cell lines, representing a broad range of tissues, further facilitates testing of gene expression, drug susceptibility, etc. Thus the pig is an excellent biomedical model for humans. For genomic applications it is an asset that the pig genome has high sequence and chromosome structure homology with humans. With the swine genome sequence now well advanced there are improving genetic and proteomic tools for these comparative analyses. The review will discuss some of the genomic approaches used to probe these models. The review will highlight genomic studies of melanoma and of infectious disease resistance, discussing issues to consider in designing such studies. It will end with a short discussion of the potential for genomic approaches to develop new alternatives for control of the most economically important disease of pigs, porcine reproductive and respiratory syndrome (PRRS), and the potential for applying knowledge gained with this virus for human viral infectious disease studies.  相似文献   

10.
The zebrafish has become a significant model system for studying renal organogenesis and disease, as well as for the quest for new therapeutics, because of the structural and functional simplicity of the embryonic kidney. Inroads to the nature and disease states of kidney-related ciliopathies and acute kidney injury (AKI) have been advanced by zebrafish studies. This model organism has been instrumental in the analysis of mutant gene function for human disease with respect to ciliopathies. Additionally, in the AKI field, recent work in the zebrafish has identified a bona fide adult zebrafish renal progenitor (stem) cell that is required for neo-nephrogenesis, both during the normal lifespan and in response to renal injury. Taken together, these studies solidify the zebrafish as a successful model system for studying the broad spectrum of ciliopathies and AKI that affect millions of humans worldwide, and point to a very promising future of zebrafish drug discovery. The emphasis of this review will be on the role of the zebrafish as a model for human kidney-related ciliopathies and AKI, and how our understanding of these complex pathologies is being furthered by this tiny teleost.  相似文献   

11.
Zebrafish models have significantly contributed to our understanding of vertebrate development and, more recently, human disease. The growing number of genetic tools available in zebrafish research has resulted in the identification of many genes involved in developmental and disease processes. In particular, studies in the zebrafish have clarified roles of the p53 tumor suppressor in the formation of specific tumor types, as well as roles of p53 family members during embryonic development. The zebrafish has also been instrumental in identifying novel mechanisms of p53 regulation and highlighting the importance of these mechanisms in vivo. This article will summarize how zebrafish models have been used to reveal numerous, important aspects of p53 function.The zebrafish, Danio rerio, is a small model organism that has long been used to study vertebrate development. Zebrafish embryos are optically clear and develop externally to the mother, facilitating the study of early developmental processes. In addition, zebrafish have increasingly been used in modeling human diseases, including a number of cancers. The availability of forward and reverse genetic tools in the zebrafish has resulted in the identification and characterization of many genes involved in development and disease. One gene that has been extensively studied is the p53 tumor suppressor gene, which is structurally and functionally conserved in the zebrafish. This article will discuss how studies in the zebrafish have increased our understanding of how p53 contributes to the formation of specific tumor types, resulted in the identification of novel mechanisms of p53 regulation, and showed how p53 and p53 family members are involved in embryonic development.  相似文献   

12.
Zebrafish (Danio rerio) have been extensively utilized for understanding mechanisms of development. These studies have led to a wealth of resources including genetic tools, informational databases, and husbandry methods. In spite of all these resources, zebrafish have been underutilized for exploring pathophysiology of disease and the aging process. Zebrafish offer several advantages over mammalian models for these studies, including the ability to perform saturation mutagenesis and the capability to contain thousands of animals in a small space. In this review, we will discuss the use of mature zebrafish as an animal model and provide specific examples to support this novel use of zebrafish. Examples include demonstrating that clinical pathology can be performed in mature zebrafish and that age-associated changes in heat shock response can be observed in zebrafish. These highlights demonstrate the utility of zebrafish as a model for disease and aging.  相似文献   

13.
Homology models were constructed for the ligand-binding domains of zebrafish estrogen receptors (zfERs) alpha, beta(1), and beta(2). Estradiol-binding sites are nearly identical in zfERs and their human homologs, suggesting that zebrafish will serve as a good model system for studying human ER-binding drugs. Conversely, studies of endocrine disruptor effects on zebrafish will benefit from the wealth of data available on xenoestrogen interactions with human ERs. Compounds flagged by the Interagency Coordinating Committee on the Validation of Alternative Methods for endocrine disruptor screening were docked into our zfER homology models. Ideally, these in silico docking studies would be complemented with in vivo binding studies. To this end, fluorescently tagged estradiol was docked into zfERalpha and found to bind in the same manner as in human ERalpha, with fluorescein preferentially occupying a region between helices 11 and 12. Fluorescently tagged estradiol was synthesized and was found to localize along the path of primordial germ cell migration in the developing zebrafish embryo 3 d after fertilization, consistent with previous reports of 1) a role for estradiol in sex determination, and 2) the first appearance of ERs 2 d after fertilization. These data provide a foundation for future in silico and in vivo binding studies of estrogen agonists and antagonists with zebrafish ERs.  相似文献   

14.
15.
辛胜昌  赵艳秋  李松  林硕  仲寒冰 《遗传》2012,34(9):1144-1152
斑马鱼具有子代数量多、体外受精、胚胎透明、可以做大规模遗传突变筛选等生物学特性, 因此成为一种良好的脊椎动物模式生物。随着研究的深入, 斑马鱼不仅应用于遗传学和发育生物学研究, 而且拓展和延伸到疾病模型和药物筛选领域。作为一种整体动物模型, 斑马鱼能够全面地检测评估化合物的活性和副作用, 实现高内涵筛选。近年来, 科学家们不断地发展出新的斑马鱼疾病模型和新的筛选技术, 并找到了一批活性化合物。这些化合物大多数在哺乳动物模型中也有相似的效果, 其中前列腺素E2(dmPGE2)和来氟米特(Leflunomide)已经进入临床实验, 分别用来促进脐带血细胞移植后的增殖和治疗黑素瘤。这些成果显示了斑马鱼模型很适合用于药物筛选。文章概括介绍了斑马鱼模型的特点和近年来在疾病模型和药物筛选方面的进展, 希望能够帮助人们了解斑马鱼在新药研发中的应用, 并开展基于斑马鱼模型的药物筛选。  相似文献   

16.
17.
Technological innovation has helped the zebrafish embryo gain ground as a disease model and an assay system for drug screening. Here, we review the use of zebrafish embryos and early larvae in applied biomedical research, using selected cases. We look at the use of zebrafish embryos as disease models, taking fetal alcohol syndrome and tuberculosis as examples. We discuss advances in imaging, in culture techniques (including microfluidics), and in drug delivery (including new techniques for the robotic injection of compounds into the egg). The use of zebrafish embryos in early stages of drug safety-screening is discussed. So too are the new behavioral assays that are being adapted from rodent research for use in zebrafish embryos, and which may become relevant in validating the effects of neuroactive compounds such as anxiolytics and antidepressants. Readouts, such as morphological screening and cardiac function, are examined. There are several drawbacks in the zebrafish model. One is its very rapid development, which means that screening with zebrafish is analogous to "screening on a run-away train." Therefore, we argue that zebrafish embryos need to be precisely staged when used in acute assays, so as to ensure a consistent window of developmental exposure. We believe that zebrafish embryo screens can be used in the pre-regulatory phases of drug development, although more validation studies are needed to overcome industry scepticism. Finally, the zebrafish poses no challenge to the position of rodent models: it is complementary to them, especially in early stages of drug research.  相似文献   

18.
To make appropriate regulatory policy decisions, the potential social and economic impacts of the policy must first be established. For environmental and occupational agents, social and economic impacts are derived from animal toxicology and, when available, human studies that serve as the base for risk-benefit analysis (RBA). Because immune function is associated with resistance to infectious disease, developing RBA for data derived from immunotoxicology studies will require determining the changes in the frequency or severity of infectious disease resulting from an exposure. Fortunately, considerable information is readily available for identifying the frequency of infectious diseases in the general population and its social and economic impacts and to assist the risk assessor when conducting RBA for immunotoxicology endpoints. The following is a brief review describing some issues in using immunotoxicity data when conducting RBA. It presents an economic methodology to determine the economic impacts of infectious diseases to society, sources where these types of information are available, and an example using a specific infectious disease, otitis media.  相似文献   

19.
The Zebrafish Information Network (zfin.org) is the central repository for Danio rerio genetic and genomic data. The Zebrafish Information Network has served the zebrafish research community since 1994, expertly curating, integrating, and displaying zebrafish data. Key data types available at the Zebrafish Information Network include, but are not limited to, genes, alleles, human disease models, gene expression, phenotype, and gene function. The Zebrafish Information Network makes zebrafish research data Findable, Accessible, Interoperable, and Reusable through nomenclature, curatorial and annotation activities, web interfaces, and data downloads. Recently, the Zebrafish Information Network and 6 other model organism knowledgebases have collaborated to form the Alliance of Genome Resources, aiming to develop sustainable genome information resources that enable the use of model organisms to understand the genetic and genomic basis of human biology and disease. Here, we provide an overview of the data available at the Zebrafish Information Network including recent updates to the gene page to provide access to single-cell RNA sequencing data, links to Alliance web pages, ribbon diagrams to summarize the biological systems and Gene Ontology terms that have annotations, and data integration with the Alliance of Genome Resources.  相似文献   

20.
Advances in genomics and next-generation sequencing have provided clinical researchers with unprecedented opportunities to understand the molecular basis of human genetic disorders. This abundance of information places new requirements on traditional disease models, which have the potential to be used to confirm newly identified pathogenic mutations and test the efficacy of emerging therapies. The unique attributes of zebrafish are being increasingly leveraged to create functional disease models, facilitate drug discovery, and provide critical scientific bases for the development of new clinical tools for the diagnosis and treatment of human disease. In this short review and the accompanying poster, we highlight a few illustrative examples of the applications of the zebrafish model to the study of human health and disease.KEY WORDS: Usher syndrome, Cancer, Individualized medicine, Muscular dystrophy, Tuberculosis  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号