首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pyridinoline is a fluorescent crosslinking amino acid isolated from collagen. Recently it was claimed that this material is an artefact produced from contaminating proteins during acid hydrolysis. However, in our hands, bovine tendon collagen could not be depleted of pyridinoline by the suggested treatments. A peptide which had the same fluorescence properties as those of pyridinoline could be isolated from enzymic digests of collagen. After acid hydrolysis, presence of pyridinoline in the peptide could be demonstrated on amino acid analysis. The composition of the peptide suggests that it originates from the specific regions of collagen molecule. These results clearly indicate the existence of pyridinoline in collagen invivo.  相似文献   

2.
The cell line, RCS-LTC (derived from the Swarm rat chondrosarcoma), deposits a copious extracellular matrix in which the collagen component is primarily a polymer of partially processed type II N-procollagen molecules. Transmission electron microscopy of the matrix shows no obvious fibrils, only a mass of thin unbanded filaments. We have used this cell system to show that the type II N-procollagen polymer nevertheless is stabilized by pyridinoline cross-links at molecular sites (mediated by N- and C-telopeptide domains) found in collagen II fibrils processed normally. Retention of the N-propeptide therefore does not appear to interfere with the interactions needed to form cross-links and mature them into trivalent pyridinoline residues. In addition, using antibodies that recognize specific cross-linking domains, it was shown that types IX and XI collagens, also abundantly deposited into the matrix by this cell line, become covalently cross-linked to the type II N-procollagen. The results indicate that the assembly and intertype cross-linking of the cartilage type II collagen heteropolymer is an integral, early process in fibril assembly and can occur efficiently prior to the removal of the collagen II N-propeptides.  相似文献   

3.
The hallmark of fibrotic processes is an excessive accumulation of collagen. The deposited collagen shows an increase in pyridinoline cross-links, which are derived from hydroxylated lysine residues within the telopeptides. This change in cross-linking is related to irreversible accumulation of collagen in fibrotic tissues. The increase in pyridinoline cross-links is likely to be the result of increased activity of the enzyme responsible for the hydroxylation of the telopeptides (telopeptide lysyl hydroxylase, or TLH). Although the existence of TLH has been postulated, the gene encoding TLH has not been identified. By analyzing the genetic defect of Bruck syndrome, which is characterized by a pyridinoline deficiency in bone collagen, we found two missense mutations in exon 17 of PLOD2, thereby identifying PLOD2 as a putative TLH gene. Subsequently, we investigated fibroblasts derived from fibrotic skin of systemic sclerosis (SSc) patients and found that PLOD2 mRNA is highly increased indeed. Furthermore, increased pyridinoline cross-link levels were found in the matrix deposited by SSc fibroblasts, demonstrating a clear link between mRNA levels of the putative TLH gene (PLOD2) and the hydroxylation of lysine residues within the telopeptides. These data underscore the significance of PLOD2 in fibrotic processes.  相似文献   

4.
The changes in the content of mature crosslinks with pyridinoline structure and soluble/insoluble collagen ratio in the costal cartilage tissue of human beings aged from 1 month to 57 years were found to be age-dependent. The effect of the pyridinoline crosslink content on the soluble/insoluble collagen ratio in human costal cartilage tissue may constitute no less than 67% of the total influence of the sum of all factors. The pronounced nonlinearity of the studied dependencies points to a possible involvement of a factor(s) other than the pyridinoline crosslink content.  相似文献   

5.
Fibrosis is characterized by an excessive accumulation of collagen which contains increased levels of pyridinoline cross-links. The occurrence of pyridinolines in the matrix is an important criterion in assessing the irreversibility of fibrosis, which suggests that collagen containing pyridinoline cross-links significantly contributes to the unwanted collagen accumulation. Pyridinoline cross-links are derived from hydroxylated lysine residues located within the collagen telopeptides (hydroxyallysine pathway). Here, we have investigated whether the increase in hydroxyallysine-derived cross-links in fibrotic conditions can be ascribed to an increased expression of one of the lysyl hydroxylases (LH1, LH2 with its splice variants LH2a and LH2b, or LH3) and/or to an increased expression of lysyl oxidase (LOX). In fibroblast cultures of hypertrophic scars, keloid and palmar fascia of Dupuytren's patients, as well as in activated hepatic stellate cells, increased levels of LH2b mRNA expression were observed. Only minor amounts of LH2a were present. In addition, no consistent increase in the mRNA expression levels of LH1, LH3 and LOX could be detected, suggesting that LH2b is responsible for the overhydroxylation of the collagen telopeptides and the concomitant formation of pyridinolines as found in the collagen matrix deposited in long-term cultures by the same fibrotic cells. This is consistent with our previous observation that LH2b is a telopeptide lysyl hydroxylase. We conclude that the increased expression of LH2b, leading to the increased formation of pyridinoline cross-links, is present in a wide variety of fibrotic disorders and thus represents a general fibrotic phenomenon.  相似文献   

6.
Quantitative analyses of the chemical state of the 16c residue of the alpha 1 chain of bone collagen were performed on samples from fetal (4-6-month embryo) and mature (2-3 year old) bovine animals. All of this residue could be accounted for in terms of three chemical states, in relative amounts which depended upon the age of the animal. Most of the residue was incorporated into either bifunctional or trifunctional cross-links. Some of it, however, was present as free aldehyde, and the content increased with maturation. This was established by isolating and characterizing the aldehyde-containing peptides generated by tryptic digestion of NaB3H4-reduced mature bone collagen. We have concluded that the connectivity of COOH-terminal cross-linking in bone collagen fibrils changes with maturation in the following way: at first, each 16c residue in each of the two alpha 1 chains of the collagen molecule is incorporated into a sheet-like pattern of intermolecular iminium cross-links, which stabilizes the young, nonmineralized fibril as a whole. In time, some of these labile cross-links maturate into pyridinoline while others dissociate back to their precursor form. The latter is likely due to changes in the molecular packing brought about by the mineralization of the collagen fibrils. The resultant reduction in cross-linking connectivity may provide a mechanism for enhancing certain mechanical characteristics of the skeleton of a mature animal.  相似文献   

7.
Urinary pyridinoline (UPD) and deoxypyridinoline (UDPD) are selective markers in kinetic studies of mature collagen degradation in connective tissue, especially in bone. In patients with renal dysfunction, the determination of UPD and UDPD is not entirely reliable, while in anuretic patients it is impossible. As renal dysfunction is considered a risk factor for bone diseases, it is essential to determine both markers directly in the serum (SPD and SDPD). Due to the high serum concentrations of proteins, which during acid hydrolysis are converted to amino acid hydrochlorides, the system butanol-water is sometimes separated into two phases during sample preparation. Should this fact not be taken into account, the usual sample processing on a cellulose sorbent could yield substantially lower false results. This calls for some preventive measures: to ensure the homogeneity of the system containing n-butanol it is recommended to add an appropriate third component, e.g. methanol.  相似文献   

8.
A major site of pyridinoline cross-linking in bovine type IX collagen was traced to a tryptic peptide derived from one of the molecule's HMW chains. This peptide gave two amino acid sequences (in 2/1 ratio) consistent with it being a three-chained structure. The major sequence matched exactly that of the C-telopeptide of type II collagen from the same tissue. A second HMW chain that contained pyridinoline cross-links also gave two amino-terminal sequences, one from its own amino terminus, the other matching exactly the N-telopeptide cross-linking sequence of type II collagen. We conclude that type IX collagen molecules are covalently cross-linked in cartilage to molecules of type II collagen, probably at fibril surfaces.  相似文献   

9.
The tensile strength of fibrillar collagens depends on stable intermolecular cross-links formed through the lysyl oxidase mechanism. Such cross-links based on hydroxylysine aldehydes are particularly important in cartilage, bone, and other skeletal tissues. In adult cartilages, the mature cross-linking structures are trivalent pyridinolines, which form spontaneously from the initial divalent ketoimines. We examined whether this was the complete story or whether other ketoimine maturation products also form, as the latter are known to disappear almost completely from mature tissues. Denatured, insoluble, bovine articular cartilage collagen was digested with trypsin, and cross-linked peptides were isolated by copper chelation chromatography, which selects for their histidine-containing sequence motifs. The results showed that in addition to the naturally fluorescent pyridinoline peptides, a second set of cross-linked peptides was recoverable at a high yield from mature articular cartilage. Sequencing and mass spectral analysis identified their origin from the same molecular sites as the initial ketoimine cross-links, but the latter peptides did not fluoresce and were nonreducible with NaBH4. On the basis of their mass spectra, they were identical to their precursor ketoimine cross-linked peptides, but the cross-linking residue had an M+188 adduct. Considering the properties of an analogous adduct of identical added mass on a glycated lysine-containing peptide from type II collagen, we predicted that similar dihydroxyimidazolidine structures would form from their ketoimine groups by spontaneous oxidation and free arginine addition. We proposed the trivial name arginoline for the ketoimine cross-link derivative. Mature bovine articular cartilage contains about equimolar amounts of arginoline and hydroxylysyl pyridinoline based on peptide yields.  相似文献   

10.
Cross-linking in type IV collagen.   总被引:1,自引:1,他引:0       下载免费PDF全文
Type IV collagen could not be extracted from human placenta using 6M-urea containing 10mM-dithiothreitol, indicating that the type IV molecule is stabilized within the basement membrane by covalent cross-links. However, various forms of type IV collagen molecule were extractable by means of increasingly severe proteolytic conditions. Type IV collagen tetramers ('spiders') lacking only the C-terminal globular region (NC1) were further digested to the 'long-form' 7S fragment and an assortment of helical rod-like molecules derived from the 'leg' region. These molecules were separated by salt fractionation and examined by rotary-shadowing electron microscopy. Isolation of these fractions from placenta which had been reduced with NaB3H4 revealed that both the 7S (N-terminal) and C-terminal regions contained significant proportions of reducible lysine-derived cross-links. These cross-links were shown to be exclusively the stable oxo-imine hydroxylysino-5-oxonorleucine. The number of the cross-links per molecule was significantly lower than might be expected in order to fully stabilize the molecule. These results suggest that the keto-imine cross-links in type IV collagen have been stabilized in part by conversion into an unknown non-reducible form, although a sensitive immunoassay failed to show the presence of any pyridinoline. Comparison with the fibrous collagen from placenta suggested that the rate of this conversion is much greater in basement-membrane collagen.  相似文献   

11.
To clarify the role of L-ascorbic acid (AsA) in the formation of pyridinoline, we examined the effects of AsA in vitro using soluble collagen and partially purified lysyl oxidase from bovine aorta. The concentration of dehydrodihydroxylysinonorleucine decreased when AsA was added in the early stage of pyridinoline formation. However, when AsA was added in a later stage of pyridinoline formation, the concentration of pyridinoline was not affected. These findings indicated that AsA was involved in the initial enzymatic reaction in pyridinoline synthesis. We purified lysyl oxidase to confirm its association of AsA. AsA inhibited the enzyme activity. Erythorbic acid and 3,4-dihydroxybenzoate suppressed the enzyme activity as well as AsA did. The inhibition by AsA of the lysyl oxidase activity arose from characteristics of AsA structure. AsA might be important in the regulation of the oxidative reaction of lysine.  相似文献   

12.
The hallmark of fibrosis is the excessive accumulation of collagen. The deposited collagen contains increased pyridinoline cross-link levels due to an overhydroxylation of lysine residues within the collagen telopeptides. Lysyl hydroxylase 2b (LH2b) is the only lysyl hydroxylase consistently up-regulated in several forms of fibrosis, suggesting that an enhanced LH2b level is responsible for the overhydroxylation of collagen telopeptides. The present paper reports the effect of profibrotic cytokines on the expression of collagen, lysyl hydroxylases and lysyl oxidase in normal human skin fibroblasts, as well as the effect on pyridinoline formation in the deposited matrix. All three isoforms of TGF-beta induce a substantial increase in LH2b mRNA levels, also when expressed relatively to the mRNA levels of collagen type I alpha2 (COL1A2). The TGF-beta isoforms also clearly influence the collagen cross-linking pathway, since higher levels of pyridinoline cross-links were measured. Similar stimulatory effects on LH2b/COL1A2 mRNA expression and pyridinoline formation were observed for IL-4, activin A, and TNF-alpha. An exception was BMP-2, which has no effect on LH2b/COL1A2 mRNA levels nor on pyridinoline formation. Our data show for the first time that two processes, i.e., up-regulation of LH2b mRNA levels and increased formation of pyridinoline cross-links, previously recognized to be inherent to fibrotic processes, are induced by various profibrotic cytokines.  相似文献   

13.
The most abundant amine in acid hydrolysates of human skin, eluting in the crosslink region of a reversed-phase HPLC chromatogram, has the same retention time as pyridinoline standard. This amine is not pyridinoline, since it is a weak fluorophore and its U/V spectrum does not agree with that of pyridinoline. The unknown amine was isolated and characterized by fast atom bombardment mass spectrometry and its structure is consistent with a deoxy-analogue of pyridinoline. It may be a crosslink component of some biological importance, since it is not detectable in skin from a patient with Marfan's Syndrome.  相似文献   

14.
Pyridinoline is a crosslink compound isolated from bovine Achilles tendon collagen. It is a 3-hydroxypyridinium derivative with three amino and three carboxyl groups (Fujimoto, D., Akiba, K., & Nakamura, N. (1977) Biochem. Biophys. Res. Commun. 76, 1124-1129). The contents of pyridinoline in collagens from various sources were determined. The pyridinoline content of bovine Achilles tendon was 0.16 residue per 1,000 residues and that of rat Achilles tendon collagen was 0.017 residue per 1,000 residues. Besides Achilles tendon collagens, pyridinoline was found in collagens from costal cartilage, rib and femoral bone of rat. It was not found in collagens from the tail tendon and skin of rat. A crosslinked, triple-chained peptide containing pyridinoline was isolated from bovine Achilles tendon collagen after digestion with pronase. Its amino acid composition suggests that the peptide may be involved in an intermolecular crosslink among a carboxyterminal sequence, a sequence near the aminoterminus and a sequence in the helical region.  相似文献   

15.
Cartilage type IX collagen is cross-linked by hydroxypyridinium residues   总被引:4,自引:0,他引:4  
Type IX collagen, a recently discovered, unusual protein of cartilage, has a segmented triple-helical structure containing interchain disulfides. Its polymeric form and function are unknown. When prepared by pepsin from bovine articular cartilage, type IX collagen was found to contain a high concentration of hydroxypyridinium cross-links, similar to that in type II collagen. Fluorescence spectroscopy located the hydroxylysyl pyridinoline and lysyl pyridinoline cross-linking residues exclusively in the high-molecular-weight collagen fraction, from which they were recovered predominantly in a single CNBr-derived peptide. The results point to a structural role for type IX collagen in cartilage matrix, possibly as an adhesion material to type II collagen fibrils.  相似文献   

16.
Collagen tryptic peptides obtained from the nonmineralized and mineralized compartments of diaphyseal bone have different distributions of intermolecular crosslinks. Pyridinoline, a collagen crosslink thought to be associated with chronologically older bone, was detected in peptides from normineralized collagen but not from mineralized collagen. Mineralization may prevent collagen maturation; conversely, pyridinoline in nonmineralized collagen may decrease the intermolecular distances among collagen chains in fibrils and preclude mineralization.  相似文献   

17.
A method for the isolation and purification of pyridinoline from bone collagen was developed, with the use of sulphonated polystyrene resins. The analytical techniques were used to quantify pyridinoline, for which hydroxyallysine is a known precursor, in a wide range of tissues. The structure of pyridinoline proposed by Fujimoto, Moriguchi, Ishida & Hayashi [(1978) Biochem. Biophys. Res. Commun. 84, 52-57] was confirmed by 13C-n.m.r. spectroscopy and fast-atom-bombardment mass spectrometry. At concentrations greater than about 0.1 mM, pyridinoline exhibited altered fluorescence properties that were consistent with excimer formation. From alkali hydrolysates of several different tissues, a fluorescent compound was purified by gel filtration and ion-exchange chromatography and was shown to be galactosylpyridinoline. This derivative was very labile to acid treatment compared with the bifunctional cross-link analogues, and was completely converted into free pyridinoline by heating at 108 degrees C for 8 h in 0.1 M-HCl. Galactosylpyridinoline was also partially converted into free pyridinoline by prolonged alkali hydrolysis. This lability, which could also apply to other multifunctional cross-link derivatives, may explain the fact that no disaccharide derivatives of pyridinoline were isolated.  相似文献   

18.
Collagen cross-links: location of pyridinoline in type I collagen   总被引:1,自引:0,他引:1  
N Light  A J Bailey 《FEBS letters》1985,182(2):503-508
Collagen from bone, dentine and tendon (type I), all of which contain the pyridinoline cross-link at varying levels, were each digested with CNBr. The resulting peptide mixtures were resolved by gel filtration on A1.5m agarose and assayed for pyridinoline. The polymeric cross-linked peptide complex, poly alpha 1CB6 [(1980) Biochem. J. 189, 111] isolated from each of these tissues did not contain pyridinoline. Only one peptide fraction contained the pyridinoline cross-link; that identified as alpha 2CB3,5. However, this peptide showed only a small increase in Mr in its cross-linked form (approx. 2000-5000) demonstrating that pyridinoline is not involved in the formation of polymeric structures like poly alpha 1CB6. These data, considered in the light of the recent finding that pyridinoline is present in type I collagens from different sources in widely varying amounts, cast doubt on its role in collagen maturation.  相似文献   

19.
Tryptic peptides of bone collagens from 4-week-old normal, osteoblastoma and vitamin D-deficient chicks were studied using gel filtration chromatography. Absorbance at 230 nm and fluorescence (excitation at 330 nm, emission at 390 nm) of eachfraction were measured. The relative quantities of each peak from the absorbance and fluorescence patterns were semiquantified by planimetry. Osteoblastoma bone collagen had a prominent, fluorescent, crosslinked peptide that contained pyridinoline. Fluorescence of this pyridinoline-containing peak in AO collagen was much greater than in the vitamin D-deficient and normal bone collagen counterparts. A comparison of fluorescence patterns clearly showed that the distribution of pyridinoline in collagen from normal and diseased bone was totally dissimilar.The dissimilarities in distribution of pyridinoline in these bone collagens may be attributed to differences in the degree of lysine hydroxylation, to the degree of mineralization, or some other factor.  相似文献   

20.
Tumor necrosis factor-alpha (TNF-alpha) inhibits osteoblast function in vitro by inhibiting collagen deposition. Studies generally support that TNF-alpha does not inhibit collagen biosynthesis by osteoblasts but that collagen deposition is in some way diminished. The study investigated TNF-alpha regulation of biosynthetic enzymes and proteins crucial for posttranslational extracellular collagen maturation in osteoblasts including procollagen C-proteinases, procollagen C-proteinase enhancer, and lysyl oxidase. The working hypothesis is that such regulation could inhibit collagen deposition by osteoblasts. We report that in phenotypically normal MC3T3-E1 osteoblasts, TNF-alpha decreases collagen deposition without decreasing collagen mRNA levels or procollagen protein synthesis. Analyses of the cell layers revealed that TNF-alpha diminished the levels of mature collagen cross-links, pyridinoline and deoxypyridinoline. Further analyses revealed that the mRNA expression for lysyl oxidase, the determining enzyme required for collagen cross-linking, is down-regulated by TNF-alpha in a concentration- and time-dependent manner by up to 50%. The decrease was accompanied by a significant reduction of lysyl oxidase protein levels and enzyme activity. By contrast, Northern and Western blotting studies revealed that procollagen C-proteinases bone morphogenic protein-1 and mammalians Tolloid and procollagen C-proteinase enhancer were expressed in MC3T3-E1 cells and not down-regulated. The data together demonstrate that TNF-alpha does not inhibit collagen synthesis but does inhibit the expression and activity of lysyl oxidase in osteoblasts, thereby contributing to perturbed collagen cross-linking and accumulation. These studies identify a novel mechanism in which proinflammatory cytokine modulation of an extracellular biosynthetic enzyme plays a determining role in the control of collagen accumulation by osteoblasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号