首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most serpins are associated with protease inhibition, and their ability to form loop-sheet polymers is linked to conformational disease and the human serpinopathies. Here we describe the structural and functional dissection of how a unique serpin, the non-histone architectural protein, MENT (Myeloid and Erythroid Nuclear Termination stage-specific protein), participates in DNA and chromatin condensation. Our data suggest that MENT contains at least two distinct DNA-binding sites, consistent with its simultaneous binding to the two closely juxtaposed linker DNA segments on a nucleosome. Remarkably, our studies suggest that the reactive centre loop, a region of the MENT molecule essential for chromatin bridging in vivo and in vitro, is able to mediate formation of a loop-sheet oligomer. These data provide mechanistic insight into chromatin compaction by a non-histone architectural protein and suggest how the structural plasticity of serpins has adapted to mediate physiological, rather than pathogenic, loop-sheet linkages.  相似文献   

2.
3.
MENT is a developmentally regulated heterochromatin-associated protein that condenses chromatin in terminally differentiated avian blood cells. Its homology to the serpin protein family suggests that the conserved serpin reactive center loop (RCL) and the unique M-loop are important for its function. To examine the role of these domains, we studied the interaction of wild-type and mutant MENT with naked DNA and biochemically defined nucleosome arrays reconstituted from 12-mer repeats containing nucleosome positioning sequences. Wild-type MENT folded the naked DNA duplexes into closely juxtaposed parallel structures ("tramlines"). Deletion of the M-loop, but not inactivation of the RCL, prevented tramline formation and the cooperative interaction of MENT with DNA. Reconstitution of wild-type MENT with nucleosome arrays caused their tight folding and self-association. M-loop deletion inhibited nucleosome array folding, whereas the inactive RCL mutant was competent to fold the nucleosome arrays, but had a significantly impaired ability to cause their self-association. Bifunctional chemical cross-linking of MENT revealed oligomerization of wild-type MENT in the presence of chromatin and DNA. This oligomerization was severely reduced in the RCL mutant. We propose that the mechanism of MENT-induced heterochromatin formation involves two independent events: bringing together nucleosome linkers within a chromatin fiber and formation of protein bridges between chromatin fibers. Ordered binding of MENT to linker DNA via its unique M-loop domain promotes the folding of chromatin, whereas bridging of chromatin fibers is facilitated by MENT oligomerization mediated by the RCL.  相似文献   

4.
Polyclonal antibodies have been raised against a nonhistone protein (MENT) which has been previously shown to be associated with the repressed chromatin of mature chicken erythrocytes and to promote the in vitro condensation of chromatin of immature erythrocyte nuclei. Here we report that the expression pattern of MENT closely follows chromatin condensation in maturing arian erythrocytes of definitive and primary lineages. Accumulation of MENT correlates more strongly with chromatin condensation than does accumulation of histone H5. In addition to being present in erythrocytes, the protein was also found in neutrophil nuclei and an immunofluorescence reaction was observed with embryonic (nucleated) thrombocytes. MENT was not detected in other chicken tissues (brain, liver, testis). In intact erythrocytes, MENT immunofluorescence was found in foci close to the nuclear periphery, while in isolated, decondensed nuclei, the fluorescence signal was uniformly distributed. In neutrophil nuclei, containing approximately 10 times more MENT than adult erythrocytes, intense staining associated with the peripheral heterochromatin was observed. These findings are discussed in regard to a possible mechanism for chromatin condensation by MENT.  相似文献   

5.
A balance between proteolytic activity and protease inhibition is crucial to the appropriate function of many biological processes. There is mounting evidence for the presence of both papain-like cysteine proteases and serpins with a corresponding inhibitory activity in the nucleus. Well characterized examples of cofactors fine tuning serpin activity in the extracellular milieu are known, but such modulation has not been studied for protease-serpin interactions within the cell. Accordingly, we present an investigation into the effect of a DNA-rich environment on the interaction between model serpins (MENT and SCCA-1), cysteine proteases (human cathepsin V and human cathepsin L), and cystatin A. DNA was indeed found to accelerate the rate at which MENT inhibited cathepsin V, a human orthologue of mammalian cathepsin L, up to 50-fold, but unexpectedly this effect was primarily effected via the protease and secondarily by the recruitment of the DNA as a "template" onto which cathepsin V and MENT are bound. Notably, the protease-mediated effect was found to correspond both with an altered substrate turnover and a conformational change within the protease. Consistent with this, cystatin inhibition, which relies on occlusion of the active site rather than the substrate-like behavior of serpins, was unaltered by DNA. This represents the first example of modulation of serpin inhibition of cysteine proteases by a co-factor and reveals a mechanism for differential regulation of cathepsin proteolytic activity in a DNA-rich environment.  相似文献   

6.
MENT (Myeloid and Erythroid Nuclear Termination stage-specific protein) is a developmentally regulated chromosomal serpin that condenses chromatin in terminally differentiated avian blood cells. We show that MENT is an effective inhibitor of the papain-like cysteine proteinases cathepsins L and V. In addition, ectopic expression of MENT in mammalian cells is apparently sufficient to inhibit a nuclear papain-like cysteine proteinase and prevent degradation of the retinoblastoma protein, a major regulator of cell proliferation. MENT also accumulates in the nucleus, causes a strong block in proliferation, and promotes condensation of chromatin. Variants of MENT with mutations or deletions within the M-loop, which contains a nuclear localization signal and an AT-hook motif, reveal that this region mediates nuclear transport and morphological changes associated with chromatin condensation. Non-inhibitory mutants of MENT were constructed to determine whether its inhibitory activity has a role in blocking proliferation. These mutations changed the mode of association with chromatin and relieved the block in proliferation, without preventing transport to the nucleus. We conclude that the repressive effect of MENT on chromatin is mediated by its direct interaction with a nuclear protein that has a papain-like cysteine proteinase active site.  相似文献   

7.
Active genes are insulated from developmentally regulated chromatin condensation in terminally differentiated cells. We mapped the topography of a terminal stage-specific chromatin-condensing protein, MENT, across the active chicken beta-globin domain. We observed two sharp transitions of MENT concentration coinciding with the beta-globin boundary elements. The MENT distribution profile was opposite to that of acetylated core histones but correlated with that of histone H3 dimethylated at lysine 9 (H3me2K9). Ectopic MENT expression in NIH 3T3 cells caused a large-scale and specific remodeling of chromatin marked by H3me2K9. MENT colocalized with H3me2K9 both in chicken erythrocytes and NIH 3T3 cells. Mutational analysis of MENT and experiments with deacetylase inhibitors revealed the essential role of the reaction center loop domain and an inhibitory affect of histone hyperacetylation on the MENT-induced chromatin remodeling in vivo. In vitro, the elimination of the histone H3 N-terminal peptide containing lysine 9 by trypsin blocked chromatin self-association by MENT, while reconstitution with dimethylated but not acetylated N-terminal domain of histone H3 specifically restored chromatin self-association by MENT. We suggest that histone H3 modification at lysine 9 directly regulates chromatin condensation by recruiting MENT to chromatin in a fashion that is spatially constrained from active genes by gene boundary elements and histone hyperacetylation.  相似文献   

8.
Transcription within a functional human centromere   总被引:11,自引:0,他引:11  
  相似文献   

9.
Heterochromatin in the cell nucleus seems to concentrate various proteins, such as Drosophila heterochromatin protein 1, which maintain the repressed state of gene expression. However, it still remains obscure how protein composition related to chromatin structure is different between heterochromatin and euchromatin in interphase nuclei. We isolated cytological heterochromatin from sonicated interphase nuclei obtained from rat liver cells and prepared antisera against it. The dense heterochromatic bodies seen in the preparation of intact nuclei were duplicated in a relatively pure form during the preparation of heterochromatin. In the sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis, differences between the fractions of heterochromatin and euchromatin were noted by their protein composition. Isolated heterochromatin was then digested by DNase after partial digestion with trypsin and its dense structure changed to become highly sensitive to DNase. The prepared antibodies reacted with the heterochromatin region of rat liver cell nuclei and isolated cytological heterochromatin; however, they did not react with euchromatin. Using immunohistochemistry, the antibodies bound to each cell nucleus in all tissues observed; some cell types were distinguished by their differential stainability (e.g. staining in the cytoplasm). Staining of the mitotic cells showed that the proteins recognized by the antibodies were localized in the cytoplasm and, in part, on the chromosomes. Based on the results of molecular cloning from rat liver cDNA library using the antibodies as a probe, it seemed that the antibodies mainly recognized two proteins similar to arginase and general vesicular transport factor p115, respectively. The results obtained from these experiments reveal that some proteins located in the heterochromatin of interphase liver cell nuclei seem to play important roles in condensing a portion of the chromatin structure during interphase and suggest that proteins composing heterochromatin might be changed according to cell types or the stage of the cell cycle.  相似文献   

10.
Heterochromatin, a type of condensed DNA in eukaryotic cells, has two main categories: Constitutive heterochromatin, which contains H3K9 methylation, and facultative heterochromatin, which contains H3K27 methylation. Methylated H3K9 and H3K27 serve as docking sites for chromodomain-containing proteins that compact chromatin. M33 (also known as CBX2) is a chromodomain-containing protein that binds H3K27me3 and compacts chromatin in vitro. However, whether M33 mediates chromatin compaction in cellulo remains unknown. Here we show that M33 compacts chromatin into DAPI-intense heterochromatin domains in cells. The formation of these heterochromatin domains requires H3K27me3, which recruits M33 to form nuclear bodies. G9a and SUV39H1 are sequentially recruited into M33 nuclear bodies to create H3K9 methylated chromatin in a process that is independent of HP1α. Finally, M33 decreases progerin-induced nuclear envelope disruption caused by loss of heterochromatin. Our findings demonstrate that M33 mediates the formation of condensed chromatin by forming nuclear bodies containing both H3K27me3 and H3K9me3. Our model of M33-dependent chromatin condensation suggests H3K27 methylation corroborates with H3K9 methylation during the formation of facultative heterochromatin and provides the theoretical basis for developing novel therapies to treat heterochromatin-related diseases.  相似文献   

11.
Proteases and their inhibitors are indispensable for the regulated activation and/or degradation of structural and functional proteins involved in basic cellular processes, e.g. in cell cycle control, cell growth, differentiation and apoptosis. In this context the serine protease inhibitors derived from the murine Spi-1, Spi-2 and Spi-3 genes, and their human homologs, deserve reconsideration. Microsequencing data indicate that a fraction of the three serpins has the capability to constitute a well characterized proteinase K, high salt and SDS-stable complex which coisolates with DNA under salting out conditions from various cell and tissue types. This tight association with DNA isolated under conditions designed to deproteinize DNA efficiently points to an in situ preformed chromatin complex. Accordingly, in addition to their well known functions as 'serum protease inhibitors' the Spi-1 and Spi-2 gene-derived proteins appear to have intracellular functions as well. The involvement of the three serpins in chromatin complexes requires their nuclear translocation. Application of (enhanced) green fluorescent protein technology and optical section microscopy reveals that truncation of the N-terminal signal sequences of the Spi-1 and Spi-2 gene-encoded proteins is a prerequisite for their nuclear translocation while non-truncated fusion proteins are enriched at the nuclear indentation which is the site of the Golgi apparatus and the centrosome. The identification of new species of intracellular serpins is of potential interest with respect to accumulating evidence for serine protease inhibitor-dependent inhibition or prevention of apoptosis.  相似文献   

12.
13.
14.
In mature sperm the normal nucleosomal packaging of DNA found in somatic and meiotic cells is transformed into a highly condensed form of chromatin which consists mostly of nucleoprotamines. Although sperm DNA is highly condensed it is nevertheless packaged into a highly defined nuclear architecture which may be organized by the heterochromatic chromocenter. One major component of heterochromatin is the heterochromatin protein 1 which is involved in epigenetic gene silencing. In order to investigate the possible involvement of heterochromatin protein in higher order organization of sperm DNA we studied the localization of the murine homologue of heterochromatin protein 1, M31, during chromatin reorganization in male germ cell differentiation. Each cell type in the testis showed a unique distribution pattern of M31. Colocalization to the heterochromatic regions were found in Sertoli cells, in midstage pachytene spermatocytes, and in round spermatids in which M31 localizes to the centromeric chromocenter. M31 cannot be detected in elongated spermatids or mature spermatozoa immunocytologically, but could be detected in mature spermatozoa by Western blotting. We suggest that M31, a nuclear protein involved in the organization of chromatin architecture, is involved in higher order organization of sperm DNA.  相似文献   

15.
Actin-related proteins (Arps) were recently shown to contribute to the organization and regulation of chromatin structures. The nuclear functions of Arps have been investigated principally in budding yeast in which six of the ten Arp subfamilies are localized in the nucleus. In vertebrates, only two isoforms of Arp4 have so far been identified as showing localization to the nucleus. Here we show the predominant nuclear localization of another Arp subfamily, Arp6, in vertebrate cells. Vertebrate Arp6 directly interacted with heterochromatin protein 1 (HP1) orthologs and the two proteins colocalized in pericentric heterochromatin. Yeast Arp6 is involved in telomere silencing, while Drosophila Arp6 is localized in the pericentric heterochromatin. Our data strongly suggest that Arp6 has an evolutionarily conserved role in heterochromatin formation and also provide new insights into the molecular organization of heterochromatin.  相似文献   

16.
In polytene chromosomes of Drosophila melanogaster, regions of pericentric heterochromatin coalesce to form a compact chromocenter and are highly underreplicated. Focusing on study of X chromosome heterochromatin, we demonstrate that loss of either SU(VAR)3-9 histone methyltransferase activity or HP1 protein differentially affects the compaction of different pericentric regions. Using a set of inversions breaking X chromosome heterochromatin in the background of the Su(var)3-9 mutations, we show that distal heterochromatin (blocks h26-h29) is the only one within the chromocenter to form a big "puff"-like structure. The "puffed" heterochromatin has not only unique morphology but also very special protein composition as well: (i) it does not bind proteins specific for active chromatin and should therefore be referred to as a pseudopuff and (ii) it strongly associates with heterochromatin-specific proteins SU(VAR)3-7 and SUUR, despite the fact that HP1 and HP2 are depleted particularly from this polytene structure. The pseudopuff completes replication earlier than when it is compacted as heterochromatin, and underreplication of some DNA sequences within the pseudopuff is strongly suppressed. So, we show that pericentric heterochromatin is heterogeneous in its requirement for SU(VAR)3-9 with respect to the establishment of the condensed state, time of replication, and DNA polytenization.  相似文献   

17.
18.
Wallace JA  Orr-Weaver TL 《Chromosoma》2005,114(6):389-402
Heterochromatin is composed of tightly condensed chromatin in which the histones are deacetylated and methylated, and specific nonhistone proteins are bound. Additionally, in vertebrates and plants, the DNA within heterochromatin is methylated. As the heterochromatic state is stably inherited, replication of heterochromatin requires not only duplication of the DNA but also a reinstallment of the appropriate protein and DNA modifications. Thus replication of heterochromatin provides a framework for understanding mechanisms of epigenetic inheritance. In recent studies, roles have been identified for replication factors in reinstating heterochromatin, particularly functions for origin recognition complex, proliferating cell nuclear antigen, and chromatin-assembly factor 1 in recruiting the heterochromatin binding protein HP1, a histone methyltransferase, a DNA methyltransferase, and a chromatin remodeling complex. Potential mechanistic links between these factors are discussed. In some cells, replication of the heterochromatin is blocked, and in Drosophila this inhibition is mediated by a chromatin binding protein SuUR.  相似文献   

19.
20.
The centromere is a key region for cell division where the kinetochore assembles, recognizes and attaches to microtubules so that each sister chromatid can segregate to each daughter cell. The centromeric chromatin is a unique rigid chromatin state promoted by the presence of the histone H3 variant CENP-A, in which epigenetic histone modifications of both heterochromatin or euchromatin states and associated protein elements are present. Although DNA sequence is not regarded as important for the establishment of centromere chromatin, it has become clear that this structure is formed as a result of a highly regulated epigenetic event that leads to the recruitment and stability of kinetochore proteins. We describe an integrative model for epigenetic processes that conform regional chromatin interactions indispensable for the recruitment and stability of kinetochore proteins. If alterations of these chromatin regions occur, chromosomal instability is promoted, although segregation may still take place.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号