首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A phenomenological mixture model is presented for interactions between biosynthesis of extracellular matrix (ECM) constituents and ECM linking in a scaffold seeded with chondrocytes. A system of three ordinary differential equations for average apparent densities of unlinked ECM, linked ECM and scaffold is developed along with associated initial conditions for scaffold material properties. Equations for unlinked ECM synthesis and ECM linking include an inhibitory mechanism where associated rates decrease as unlinked ECM concentration in the interstitial fluid increases. Linking rates are proposed to depend on average porosity in the evolving tissue construct. The resulting initial value problem contains nine independent parameters that account for scaffold biomaterial properties and interacting mechanisms in the engineered system. Effects of parameter variations on model variables are analyzed relative to a baseline case with emphasis on the evolution of solid phase apparent density, which is often correlated with the compressive elastic modulus of the tissue construct. The new model provides an additional quantitative framework for assessing and optimizing the design of engineered cell-scaffold systems and guiding strategies for articular cartilage tissue engineering.  相似文献   

2.
Summary Chondrocytes were isolated from rat epiphyseal cartilage, cultured in vitro, and exposed to exogenous tracers which accumulated in their lysosomes. The cells were then injected into the posterior tibial muscle of animals from the same outbred strain, where they reconstructed calcifying hyaline cartilage. The mineralization of the tissue was followed by ingrowth of blood capillaries from the host bed. Macrophage-like cells surrounding the vessels phagocytized degenerated chondrocytes and unmineralized matrix, whereas multinucleated chondroclasts removed some of the mineralized cartilage matrix. Mesenchyme-like cells accompanying the invading vessels attached to the remaining septa of calcified cartilage matrix and developed into osteoblasts depositing bone matrix on the surface of these septa. The apparent lack of inherent tracer labeling of the lysosomes in the different bone cells indicate that they were derived from the host. No signs of transformation of chondrocytes into bone cells were observed.When isolated rat epiphyseal chondrocytes were injected into the wall of the hamster cheek pouch, calcifying cartilage was reconstructed without signs of subsequent ossification. Transplantation of cartilage reconstructed in the hamster into the dorsal muscles of rats was, however, followed by formation of bone by a sequence analogous to that described above. Such an osteogenetic response was also obtained when the cartilage had been devitalized before transplantation.These experiments show that calcified cartilage, developing in or grafted into an intramuscular site, is able to induce and serve as a substrate for endochondral bone formation, similar to that occurring during normal development. They further indicate that bone induction by calcified cartilage does not require the presence of living chondrocytes.Financial support was obtained from the Swedish Medical Research Council (proj. no. 03355), the King Gustaf V 80th Birthday Fund, and from the funds of Karolinska Institutet. The authors thank Karin Blomgren for technical assistance and Inger Lohmander-Åhrén and Eva Pettersson for secretarial helpOn leave from the Department of Histology and Embryology, Medical Academy, Warsaw, Poland  相似文献   

3.
Since articular cartilage is subjected to varying loads in vivo and undergoes cyclic hydrostatic pressure during periods of loading, it is hypothesized that mimicking these in vivo conditions can enhance synthesis of important matrix components during cultivation in vitro. Thus, the influence of intermittent loading during redifferentiation of chondrocytes in alginate beads, and during cartilage formation was investigated. A statistically significant increased synthesis of glycosaminoglycan and collagen type II during redifferentiation of chondrocytes embedded in alginate beads, as well as an increase in glycosaminoglycan content of tissue-engineered cartilage, was found compared to control without load. Immunohistological staining indicated qualitatively a high expression of collagen type II for both cases.  相似文献   

4.
Implantation of tissue-engineered heterotopic cartilage into joint cartilage defects might be an alternative approach to improve articular cartilage repair. Hence, the aim of this study was to characterize and compare the quality of tissue-engineered cartilage produced with heterotopic (auricular, nasoseptal and articular) chondrocytes seeded on polyglycolic acid (PGA) scaffolds in vitro and in vivo using the nude mice xenograft model. PGA scaffolds were seeded with porcine articular, auricular and nasoseptal chondrocytes using a dynamic culturing procedure. Constructs were pre-cultured 3 weeks in vitro before being implanted subcutaneously in nude mice for 1, 6 or 12 weeks, non-seeded scaffolds were implanted as controls. Heterotopic neo-cartilage quality was assessed using vitality assays, macroscopical and histological scoring systems. Neo-cartilage formation could be observed in vitro in all PGA associated heterotopic chondrocytes cultures and extracellular cartilage matrix (ECM) deposition increased in vivo. The 6 weeks in vivo incubation time point leads to more consistent results for all cartilage species, since at 12 weeks in vivo construct size reductions were higher compared with 6 weeks except for auricular chondrocytes PGA cultures. Some regressive histological changes could be observed in all constructs seeded with all chondrocytes subspecies such as cell-free ECM areas. Particularly, but not exclusively in nasoseptal chondrocytes PGA cultures, ossificated ECM areas appeared. Elastic fibers could not be detected within any neo-cartilage. The neo-cartilage quality did not significantly differ between articular and non-articular chondrocytes constructs. Whether tissue-engineered heterotopic neo-cartilage undergoes sufficient transformation, when implanted into joint cartilage defects requires further investigation.  相似文献   

5.
Lai WM  Sun DD  Ateshian GA  Guo XE  Mow VC 《Biorheology》2002,39(1-2):39-45
An important step toward understanding signal transduction mechanisms modulating cellular activities is the accurate predictions of the mechanical and electro-chemical environment of the cells in well-defined experimental configurations. Although electro-kinetic phenomena in cartilage are well known, few studies have focused on the electric field inside the tissue. In this paper, we present some of our recent calculations of the electric field inside a layer of cartilage (with and without cells) in an open circuit one-dimensional (1D) stress relaxation experiment. The electric field inside the tissue derives from the streaming effects (streaming potential) and the diffusion effect (diffusion potential). Our results show that, for realistic cartilage material parameters, due to deformation-induced inhomogeneity of the fixed charge density, the two potentials compete against each other. For softer tissue, the diffusion potential may dominate over the streaming potential and vice versa for stiffer tissue. These results demonstrate that for proper interpretation of the mechano-electrochemical signal transduction mechanisms, one must not ignore the diffusion potential.  相似文献   

6.
The uncontrolled formation of amyloid fibers is the hallmark of more than twenty human diseases. In contrast to disease-associated amyloids, which are the products of protein misfolding, E. coli assembles functional amyloid fibers called curli on its surface using an elegant biogenesis machine. Composed of a major subunit, CsgA, and a minor subunit, CsgB, curli play important roles in host cell adhesion, long-term survival and other bacterial community behaviors. Assembly of curli fibers is a template-directed conversion process where membrane-tethered CsgB initiates CsgA polymerization. The CsgA amyloid core is composed of five imperfect repeating units. In a series of in vivo and in vitro experiments, we determined the sequence and structural determinants that guide the initiation and propagation of CsgA polymers. The CsgA N- and C-terminal repeating units govern its polymerization and responsiveness to CsgB. Specifically, conserved glutamine and asparagine residues present in the CsgA N- and C-terminal repeating units are required for CsgB-mediated nucleation and efficient self-assembly.Key words: amyloid, nucleation, polymerization, curli, sequence determinants  相似文献   

7.
《朊病毒》2013,7(2):57-60
The uncontrolled formation of amyloid fibers is the hallmark of more than twenty human diseases. In contrast to disease-associated amyloids, which are the products of protein misfolding, E. coli assembles functional amyloid fibers called curli on its surface using an elegant biogenesis machine. Composed of a major subunit, CsgA, and a minor subunit, CsgB, curli play important roles in host cell adhesion, long-term survival and other bacterial community behaviors. Assembly of curli fibers is a template-directed conversion process where membrane-tethered CsgB initiates CsgA polymerization. The CsgA amyloid core is composed of five imperfect repeating units. In a series of in vivo and in vitro experiments, we determined the sequence and structural determinants that guide the initiation and propagation of CsgA polymers. The CsgA N- and C-terminal repeating units govern its polymerization and responsiveness to CsgB. Specifically, conserved glutamine and asparagine residues present in the CsgA N- and C-terminal repeating units are required for CsgB-mediated nucleation and efficient self-assembly.  相似文献   

8.
Pulsed ultrasound (1 MHz, 67 mW/cm(2) Ispta, and 10 min/day) promoted cell proliferation and matrix deposition in low-density 2D ( approximately 6 x 10(3)cells/cm(2)) as well as 3D ( approximately 4 x 10(6)cells/cm(3)) chondrocyte cultures. The beneficial effect of ultrasound on neocartilage formation only last 28 days, shorter than that of bioreactors.  相似文献   

9.
10.
11.
A single application of cyclic compression (1kPa, 1Hz, 30min) to bioengineered cartilage results in improved tissue formation through sequential catabolic and anabolic changes mediated via cell shape changes that are regulated by α5β1 integrin and membrane-type metalloprotease (MT1-MMP). To determine if calcium was involved in this process, the role of calcium in regulating cell shape changes, MT1-MMP expression and integrin activity in response to mechanical stimulation was examined. Stimulation-induced changes in cell shape and MT1-MMP expression were abolished by chelation of extracellular calcium, and this effect was reversed by re-introduction of calcium. Spreading was inhibited by blocking stretch-activated channels (with gadolinium), while retraction was prevented by blocking the L-Type voltage-gated channel (with nifedipine); both compounds inhibited MT1-MMP upregulation. Calcium A23187 ionophore restored cellular response further supporting a role for these channels. Calcium regulated the integrin-mediated signalling pathway, which was facilitated through Src kinase. Both calcium- and integrin-mediated pathways converged on ERK-MAPK in response to stimulation. While both integrins and calcium signalling mediate chondrocyte mechanotransduction, calcium appears to play the major regulatory role. Understanding the underlying molecular mechanisms involved in chondrocyte mechanotransduction may lead to the development of improved bioengineered cartilage.  相似文献   

12.
The principles and molecular mechanisms underlying biological pattern formation are difficult to elucidate in most cases due to the overwhelming physiologic complexity associated with the natural context. The understanding of a particular mechanism, not to speak of underlying universal principles, is difficult due to the diversity and uncertainty of the biological systems. Although current genetic and biochemical approaches have greatly advanced our understanding of pattern formation, the progress mainly relies on experimental phenotypes obtained from time-consuming studies of gain or loss of function mutants. It is prevailingly considered that synthetic biology will come to the application age, but more importantly synthetic biology can be used to understand the life. Using periodic stripe pattern formation as a paradigm, we discuss how to apply synthetic biology in understanding biological pattern formation and hereafter foster the applications like tissue engineering.  相似文献   

13.
Articular cartilage is often used for research on cartilage tissue engineering. However, ear cartilage is easier to harvest, with less donor-site morbidity. The aim of this study was to evaluate whether adult human ear chondrocytes were capable of producing cartilage after expansion in monolayer culture. Cell yield per gram of cartilage was twice as high for ear than for articular cartilage. Moreover, ear chondrocytes proliferated faster. Cell proliferation could be further stimulated by the use of serum-free medium with Fibroblast Growth Factor 2 (FGF2) in stead of medium with 10% serum. To evaluate chondrogenic capacity, multiplied chondrocytes were suspended in alginate and implanted subcutaneously in athymic mice. After 8 weeks the constructs demonstrated a proteoglycan-rich matrix that contained collagen type II. Constructs of ear chondrocytes showed a faint staining for elastin. Quantitative RT-PCR revealed that expression of collagen type II was 2-fold upregulated whereas expression of collagen type I was 2-fold down regulated in ear chondrocytes expanded in serum-free medium with FGF2 compared to serum-containing medium. Expression of alkaline phosphatase and collagen type X were low indicating the absence of terminal differentiation. We conclude that ear chondrocytes can be used as donor chondrocytes for cartilage tissue engineering. Furthermore, it may proof to be a promising alternative cell source to engineer cartilage for articular repair.  相似文献   

14.
Cell culture with serum-containing medium has potential problems associated with contamination of infectious agents. This study demonstrates for the first time the feasibility of regenerating cartilage tissues in vivo by implantation of chondrocytes cultured in vitro in a chemically-defined, serum-free medium. Chondrocytes cultured in the serum-free medium grew similarly to those in a serum-containing medium. Implantation of chondrocytes cultured in the serum-free medium and seeded on to polymer scaffolds resulted in the regeneration of cartilage tissues with histological aspects similar to those of cartilage tissues regenerated from chondrocytes cultured in serum-containing medium.  相似文献   

15.
We describe here a protocol for the representative amplification of global mRNAs from typical single mammalian cells to provide a template for high-density oligonucleotide microarray analysis. A single cell is lysed in a tube without purification and first-strand cDNAs are synthesized using a poly(dT)-tailed primer. Unreacted primer is specifically eliminated by exonuclease treatment and second strands are generated with a second poly(dT)-tailed primer after poly(dA) tailing of the first-strand cDNAs. The cDNAs are split into four tubes, which are independently directionally amplified by PCR, and then recombined. The amplified products (approximately 100 ng) show superior representation and reproducibility of original gene expression, especially for genes expressed in more than 20 copies per cell, compared with those obtained by a conventional PCR protocol, and can effectively be used for quantitative PCR and EST analyses. The cDNAs are then subjected to another PCR amplification with primers bearing the T7 promoter sequence. The resultant cDNA products are gel purified, amplified by one final cycle and used for isothermal linear amplification by T7 RNA polymerase to synthesize cRNAs for microarray hybridization. This protocol yields cDNA templates sufficient for more than 80 microarray hybridizations from a single cell, and can be completed in 5-6 days.  相似文献   

16.
Indirect immunocytochemical staining with antisera raised against purified glial filament protein and a neurofilament polypeptide was used to study cell interactions between astrocytes and neurons dissociated from embryonic and early postnatal cerebellum. Staining with antibodies raised against purified glial filament protein revealed that greater than 99% of all processes present in cerebellar cultures during the 1st wk in vitro were glial in origin. After 1 wk in culture, unstained processes that were presumably neuronal were observed. Stained astroglial processes formed a dense network that served as a template for cerebellar neurons, identified by indirect immunocytochemical localization of tetanus toxin. More than 90% of neurons from postnatal days 1 or 7 were positioned within one cell diameter of a glial process. In contrast, less than 40% of the neurons dissociated from early embryonic cerebellum were located adjacent to a glial process. Staining with antibodies raised against purified glial filament protein also revealed differences in astroglial morphology that were under developmental regulation. Astroglial cells from embryonic cerebellum were fewer in number and had thick, unbranched processes. Those from postnatal day 1 were more slender, branched, and stellate. Those from postnatal day 7 were highly branched and stellate. Some veil-like astroglial processes were also observed in cells from postnatal animals. These morphological changes were also observed when cells from embryonic day 13 were maintained for a week in vitro. No specific staining of embryonic or postnatal cerebellum cells was observed with antibodies raised against purified neurofilament polypeptides.  相似文献   

17.
Differentiated chondrocytes, isolated from chick embryo cartilage, were cultured in monolayer, as aggregate or pellet. Aggregation of chondrocytes was accomplished by incubating 2 × 105 cells in a 5-μl drop of culture medium. Under all three conditions, the cells remained healthy and proliferated during culture. However, matrix production, as indicated by incorporation of [35S]sulphate into glycosaminoglycans, was greater in aggregated chondrocytes than in monolayers or pellets. In addition, aggregates consisting of a well defined number of cells, could easily be manipulated for experiments. Therefore aggregates provide a favourable model system to study factors modulating the metabolism of chondrocytes.  相似文献   

18.
Chondrocytes were isolated from auricular cartilage of immature rabbits and maintained in monolayer or organ culture for 14 days. In both types of culture the chondrocytes formed conspicuous elastic fibers. In monolayer culture the fibers could be identified by orcein staining in the culture dish. Electron microscopy of organ cultures revealed the presence of two basic components of elastic fibers, i.e. microfibrils and elastin.  相似文献   

19.
Low back pain is one of the most common medical conditions in the Western world. Disc degeneration, an inevitable process of ageing, is one of the major causes of low back pain. Autologous chondrocyte transplantation (ACT) is an increasingly popular method of addressing pathological disorders of cartilage. The purpose of our study was to determine whether autologous chondrocytes from elastic cartilage could survive and synthesise a cartilage specific matrix in the intervertebral disc of rabbits. Sixteen lumbar intervertebral discs (IVD) of New Zealand White rabbits were analysed. In 6 IVD, the nucleus pulposus was evacuated and replaced with tissue engineered autologous chondrocytes from auricular cartilage. In the second group, only the nucleus pulposus was evacuated from 6 IVD, with no chondrocytes implantation. Four non-operated IVD were used as a control. Six months after the operation, the animals were euthanized and the IVD were analysed histologically. Autologous cartilage implants were well tolerated by the host for up to six months in vivo. There was only hyaline-like cartilage in the place of the nucleus pulposus. We could not detect any elastic fibres in the new cartilage matrix. In IVD from which only the nucleus pulposus was evacuated and no chondrocytes were implanted, just fibrous tissue was found instead of nucleus pulposus. The overall histological analysis of new cartilage produced after implantation in our study confirmed the hypothesis that ACT from auricular cartilage can be implanted into the IVD instead of the nucleus pulposus and that a significant percentage of implanted chondrocytes survive and produce hyaline-like cartilage.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号