首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Medium-chain-length (mcl) poly(3-hydroxyalkanoates) (PHAs) are storage polymers that are produced from various substrates and accumulate in Pseudomonas strains belonging to rRNA homology group I. In experiments aimed at increasing PHA production in Pseudomonas strains, we generated an mcl PHA-overproducing mutant of Pseudomonas putida KT2442 by transposon mutagenesis, in which the aceA gene was knocked out. This mutation inactivated the glyoxylate shunt and reduced the in vitro activity of isocitrate dehydrogenase, a rate-limiting enzyme of the citric acid cycle. The genotype of the mutant was confirmed by DNA sequencing, and the phenotype was confirmed by biochemical experiments. The aceA mutant was not able to grow on acetate as a sole carbon source due to disruption of the glyoxylate bypass and exhibited two- to fivefold lower isocitrate dehydrogenase activity than the wild type. During growth on gluconate, the difference between the mean PHA accumulation in the mutant and the mean PHA accumulation in the wild-type strain was 52%, which resulted in a significant increase in the amount of mcl PHA at the end of the exponential phase in the mutant P. putida KT217. On the basis of a stoichiometric flux analysis we predicted that knockout of the glyoxylate pathway in addition to reduced flux through isocitrate dehydrogenase should lead to increased flux into the fatty acid synthesis pathway. Therefore, enhanced carbon flow towards the fatty acid synthesis pathway increased the amount of mcl PHA that could be accumulated by the mutant.  相似文献   

2.
3.
Aeromonas hydrophila CGMCC 0911 possessing type I polyhydroxyalkanoate (PHA) synthase (PhaC) produced only PHBHHx from lauric acid but not from glucose. Medium-chain-length (mcl) PHA was produced from lauric acid or glucose only when PhaC of A. hydrophila was inactivated, indicating the existence of another PHA synthase in the wild type. Using PCR cloning strategy, the potential PHA synthase gene (phaC mcl) was obtained from genomic DNA of the wild type and exhibited strong homology to type II PHA synthase genes of Pseudomonas strains. The phaC mcl gene was PCR subcloned into plasmid pBBR1MCS2 and expressed in a PHA-negative mutant of Pseudomonas putida. Recombinant P. putida synthesized mcl PHA from gluconate or octanoate. This result proved that wild type A. hydrophila possessed another type II PHA synthase, which was responsible for the synthesis of mcl PHA, besides type I PHA synthase.  相似文献   

4.
Bdellovibrio bacteriovorus HD100 is an obligate predator that invades and grows within the periplasm of Gram‐negative bacteria, including mcl‐polyhydroxyalkanoate (PHA) producers such as Pseudomonas putida. We investigated the impact of prey PHA content on the predator fitness and the potential advantages for preying on a PHA producer. Using a new procedure to control P. putida KT2442 cell size we demonstrated that the number of Bdellovibrio progeny depends on the prey biomass and not on the viable prey cell number or PHA content. The presence of mcl‐PHA hydrolysed products in the culture supernatant after predation on P. putida KT42Z, a PHA producing strain lacking PhaZ depolymerase, confirmed the ability of Bdellovibrio to degrade the prey's PHA. Predator motility was higher when growing on PHA accumulating prey. External addition of PHA polymer (latex suspension) to Bdellovibrio preying on the PHA minus mutant P. putida KT42C1 restored predator movement, suggesting that PHA is a key prey component to sustain predator swimming speed. High velocities observed in Bdellovibrio preying on the PHA producing strain were correlated to high intracellular ATP levels of the predator. These effects brought Bdellovibrio fitness benefits as predation on PHA producers was more efficient than predation on non‐producing bacteria.  相似文献   

5.
Pseudomonas putida CA-3 is capable of accumulating medium-chain-length polyhydroxyalkanoates (MCL-PHAs) when growing on the toxic pollutant styrene as the sole source of carbon and energy. In this study, we report on the molecular characterization of the metabolic pathways involved in this novel bioconversion. With a mini-Tn5 random mutagenesis approach, acetyl-coenzyme A (CoA) was identified as the end product of styrene metabolism in P. putida CA-3. Amplified flanking-region PCR was used to clone functionally expressed phenylacetyl-CoA catabolon genes upstream from the sty operon in P. putida CA-3, previously reported to generate acetyl-CoA moieties from the styrene catabolic intermediate, phenylacetyl-CoA. However, the essential involvement of a (non-phenylacetyl-CoA) catabolon-encoded 3-hydroxyacyl-CoA dehydrogenase is also reported. The link between de novo fatty acid synthesis and PHA monomer accumulation was investigated, and a functionally expressed 3-hydroxyacyl-acyl carrier protein-CoA transacylase (phaG) gene in P. putida CA-3 was identified. The deduced PhaG amino acid sequence shared >99% identity with a transacylase from P. putida KT2440, involved in 3-hydroxyacyl-CoA MCL-PHA monomer sequestration from de novo fatty acid synthesis under inorganic nutrient-limited conditions. Similarly, with P. putida CA-3, maximal phaG expression was observed only under nitrogen limitation, with concomitant PHA accumulation. Thus, β-oxidation and fatty acid de novo synthesis appear to converge in the generation of MCL-PHA monomers from styrene in P. putida CA-3. Cloning and functional characterization of the pha locus, responsible for PHA polymerization/depolymerization is also reported and the significance and future prospects of this novel bioconversion are discussed.  相似文献   

6.
Biosynthesis of polyhydroxyalkanoate homopolymers by Pseudomonas putida   总被引:1,自引:0,他引:1  
Pseudomonas putida KT2442 has been a well-studied producer of medium-chain-length (mcl) polyhydroxyalkanoate (PHA) copolymers containing C6 ~ C14 monomer units. A mutant was constructed from P. putida KT2442 by deleting its phaG gene encoding R-3-hydroxyacyl-ACP-CoA transacylase and several other β-oxidation related genes including fadB, fadA, fadB2x, and fadAx. This mutant termed P. putida KTHH03 synthesized mcl homopolymers including poly(3-hydroxyhexanoate) (PHHx) and poly(3-hydroxyheptanoate) (PHHp), together with a near homopolymer poly(3-hydroxyoctanoate-co-2 mol% 3-hydroxyhexanoate) (PHO*) in presence of hexanoate, heptanoate, and octanoate, respectively. When deleted with its mcl PHA synthase genes phaC1 and phaC2, the recombinant mutant termed P. putida KTHH08 harboring pZWJ4-31 containing PHA synthesis operon phaPCJ from Aeromonas hydrophila 4AK4 accumulated homopolymer poly(3-hydroxyvalerate) (PHV) when valerate was used as carbon source. The phaC deleted recombinant mutant termed P. putida KTHH06 harboring pBHH01 holding PHA synthase PhbC from Ralstonia eutropha produced homopolymers poly(3-hydroxybutyrate) (PHB) and poly(4-hydroxybutyrate) using γ-butyrolactone was added as precursor. All the homopolymers were physically characterized. Their weight average molecular weights ranged from 1.8 × 105 to 1.6 × 106, their thermal stability changed with side chain lengths. The derivatives of P. putida KT2442 have been developed into a platform for production of various PHA homopolymers.  相似文献   

7.
The fungus Aspergillus nidulans contains both a mitochondrial and peroxisomal ß-oxidation pathway. This work was aimed at studying the influence of mutations in the foxA gene, encoding a peroxisomal multifunctional protein, or in the scdA/echA genes, encoding a mitochondrial short-chain dehydrogenase and an enoyl-CoA hydratase, respectively, on the carbon flux to the peroxisomal ß-oxidation pathway. A. nidulans transformed with a peroxisomal polyhydroxyalkanoate (PHA) synthase produced PHA from the polymerization of 3-hydroxyacyl-CoA intermediates derived from the peroxisomal ß-oxidation of external fatty acids. PHA produced from erucic acid or heptadecanoic acid contained a broad spectrum of monomers, ranging from 5 to 14 carbons, revealing that the peroxisomal ß-oxidation cycle can handle both long and short-chain intermediates. While the ?foxA mutant grown on erucic acid or oleic acid synthesized 10-fold less PHA compared to wild type, the same mutant grown on octanoic acid or heptanoic acid produced 3- to 6-fold more PHA. Thus, while FoxA has an important contribution to the degradation of long-chain fatty acids, the flux of short-chain fatty acids to peroxisomal ß-oxidation is actually enhanced in its absence. While no change in PHA was observed in the ?scdA?echA mutant grown on erucic acid or oleic acid compared to wild type, there was a 2- to 4-fold increased synthesis of PHA in ?scdA?echA cells grown in octanoic acid or heptanoic acid. These results reveal that a compensatory mechanism exists in A. nidulans that increases the flux of short-chain fatty acids towards the peroxisomal ß-oxidation cycle when the mitochondrial ß-oxidation pathway is defective.  相似文献   

8.
Pseudomonas putida KT2442 produces medium-chain-length (MCL) polyhydroxyalkanoates (PHA) from fatty acids. When gene encoding 3-hydroxyacyl-CoA dehydrogenase which catalyzes long-chain-3-hydroxyacyl-CoA to 3-ketoacyl-CoA, was partially or completely deleted in P. putida KTOY08, the PHA accumulated was shown to contain only two different monomer structures dominated by a monomer of the same chain length as that of the fatty acids fed and another monomer two carbon atoms shorter. Among the PHA copolymers, P(44% 3HD-co-3HDD) containing 44% 3HD and 56% 3HDD was demonstrated to have a melting temperature Tm, an apparent heat of fusion △Hm and a Young’s modulus E of 75 °C, 51 J g?1 and 2.0 MPa, respectively, the highest among all the MCL PHA studied.  相似文献   

9.
In this study, we investigated the metabolism of ethylene glycol in the Pseudomonas putida strains KT2440 and JM37 by employing growth and bioconversion experiments, directed mutagenesis, and proteome analysis. We found that strain JM37 grew rapidly with ethylene glycol as a sole source of carbon and energy, while strain KT2440 did not grow within 2 days of incubation under the same conditions. However, bioconversion experiments revealed metabolism of ethylene glycol by both strains, with the temporal accumulation of glycolic acid and glyoxylic acid for strain KT2440. This accumulation was further increased by targeted mutagenesis. The key enzymes and specific differences between the two strains were identified by comparative proteomics. In P. putida JM37, tartronate semialdehyde synthase (Gcl), malate synthase (GlcB), and isocitrate lyase (AceA) were found to be induced in the presence of ethylene glycol or glyoxylic acid. Under the same conditions, strain KT2440 showed induction of AceA only. Despite this difference, the two strains were found to use similar periplasmic dehydrogenases for the initial oxidation step of ethylene glycol, namely, the two redundant pyrroloquinoline quinone (PQQ)-dependent enzymes PedE and PedH. From these results we constructed a new pathway for the metabolism of ethylene glycol in P. putida. Furthermore, we conclude that Pseudomonas putida might serve as a useful platform from which to establish a whole-cell biocatalyst for the production of glyoxylic acid from ethylene glycol.  相似文献   

10.
Here, we present systems metabolic engineering driven by in-silico modeling to tailor Pseudomonas putida for synthesis of medium chain length PHAs on glucose. Using physiological properties of the parent wild type as constraints, elementary flux mode analysis of a large-scale model of the metabolism of P. putida was used to predict genetic targets for strain engineering. Among a set of priority ranked targets, glucose dehydrogenase (encoded by gcd) was predicted as most promising deletion target. The mutant P. putida Δgcd, generated on basis of the computational design, exhibited 100% increased PHA accumulation as compared to the parent wild type, maintained a high specific growth rate and exhibited an almost unaffected gene expression profile, which excluded detrimental side effects of the modification. A second mutant strain, P. putida Δpgl, that lacked 6-phosphogluconolactonase, exhibited a substantially decreased PHA synthesis, as was also predicted by the model. The production potential of P. putida Δgcd was assessed in batch bioreactors. The novel strain showed an increase of the PHA yield (+80%), the PHA titer (+100%) and cellular PHA content (+50%) and revealed almost unaffected growth and diminished by-product formation. It was thus found superior in all relevant criteria towards industrial production. Beyond the contribution to more efficient PHA production processes at reduced costs that might replace petrochemical plastics in the future, the study illustrates the power of computational prediction to tailor microbial strains for enhanced biosynthesis of added-value compounds.  相似文献   

11.
The effect of the introduction of a synthetic bypass, providing 2-ketoglutarate to succinate conversion via the intermediate succinate semialdehyde formation, on aerobic biosynthesis of succinic acid from glucose through the oxidative branch of the tricarboxylic acid cycle in recombinant Escherichia coli strains has been studied. The strain lacking the key pathways of acetic, lactic acid and ethanol formation from pyruvate and acetyl-CoA and possessing modified system of glucose transport and phosphorylation was used as a chassis for the construction of the target recombinants. The operation of the glyoxylate shunt in the strains was precluded resulting from the deletion of the aceA, aceB, and glcB genes encoding isocitrate lyase and malate synthases A and G. The constitutive activity of isocitrate dehydrogenase was ensured due to deletion of isocitrate dehydrogenase kinase/phosphatase gene, aceK. Upon further inactivation of succinate dehydrogenase, the corresponding strain synthesized succinic acid from glucose with a molar yield of 24.9%. Activation of the synthetic bypass by the induced expression of Mycobacterium tuberculosis 2-ketoglutarate decarboxylase gene notably increased the yield of succinic acid. Functional activity of the synthetic bypass in the strain with the inactivated glyoxylate shunt and opened tricarboxylic acid cycle led to 2.7-fold increase in succinate yield from glucose. As the result, the substrate to the target product conversion reached 67.2%. The respective approach could be useful for the construction of the efficient microbial succinic acid producers.  相似文献   

12.
Medium-chain-length (mcl)-polyhydroxyalkanoates (PHAs), elastomeric polyesters synthesized by Genus Pseudomonas bacteria, generally have many different monomer components. In this study, PHAs biosynthesized by four type strains of Pseudomonas (P. putida, P. citronellolis, P. oleovorans, and P. pseudoalcaligenes) and a typical PHA producer (P. putida KT2440) were characterized in terms of the monomer structure and composition by gas chromatography-mass spectrometry (GC-MS) analysis. With a thiomethyl pretreatment of PHA methanolysis derivatives, two unsaturated monomers, 3-hydroxy-5-dodecenoate (3H5DD) and 3-hydroxy-5-tetradecenoate (3H5TD), were identified in mcl-PHAs produced by P. putida and P. citronellolis. The quantitative analysis of PHA monomers was performed by employing GC-MS with methanolysis derivatives, and the results coincided with those obtained by performing nuclear magnetic resonance spectroscopy. Only poly(3-hydroxybutyrate) was detected from the P. oleovorans and P. pseudoalcaligenes type strains. These analytical results would be useful as a reference standard for phenotyping of new PHA-producing bacteria.  相似文献   

13.
Stressful conditions prevailing in hydrocarbon-contaminated sites influence the diversity, distribution, and activities of microorganisms. Oil bioremediation agents should develop special characteristics to cope with these environments like surfactant production and cellular affinity to hydrocarbons. Additionally, polyhydroxyalkanoate (PHA) accumulation was proven to improve tolerance to stressful conditions. Pseudomonas sp. KA-08 was isolated from a chronic oil-contaminated environment, it is highly tolerant to xylene, and it is able to accumulate PHA and to produce surfactant compounds that lower the water surface tension (ST) as well as bioemulsifiers. In this work, we studied the effect of the capability to accumulate PHAs on biosurfactant production and microbial attachment to hydrocarbons (MATH). Our results showed that PHA synthesis capability has a favorable effect in the production of compounds which affect the ST but not on the production of bioemulsifiers. On the other hand, PHA accumulation affects cellular affinity to xylene. MATH analysis showed that a PHA-negative mutant increased its affinity to xylene compared with the wild-type strain. This result was also observed in Pseudomonas putida GPp104 (a PHA? mutant), suggesting that this effect could be generalized to other Pseudomonas strains.  相似文献   

14.
  • 1.1. The glyoxylic acid cycle pathway could be regulated through the modulation of the isocitrate dehydrogenase-NADP activity. This enzyme is inhibited by NADPH.
  • 2.2. The effect on the glyoxylate cycle flux of variations in the rate of the NADPH-consuming pathways has been studied.
  • 3.3. Increase in the rate of NADPH-consuming activity by addition of H2O2 produces inhibition of the glyoxylate cycle and decrease in the NADPH/NADP ratio.
  • 4.4. These results suggest that the glyoxylate flux in Tetrahymena could be modulated by regulation of NADP-dependent isocitrate dehydrogenase by the NADPH/NADP ratio.
  相似文献   

15.
16.
In order to improve the production of succinate and malate by the filamentous fungus Aspergillus niger the activity of the glyoxylate bypass pathway was increased by over-expression of the isocitrate lyase (icl) gene. The hypothesis was that when isocitrate lyase was up-regulated the flux towards glyoxylate would increase, leading to excess formation of malate and succinate compared to the wild-type. However, metabolic network analysis showed that an increased icl expression did not result in an increased glyoxylate bypass flux. The analysis did show a global response with respect to gene expression, leading to an increased flux through the oxidative part of the TCA cycle. Instead of an increased production of succinate and malate, a major increase in fumarate production was observed.The effect of malonate, a competitive inhibitor of succinate dehydrogenase (SDH), on the physiological behaviour of the cells was investigated. Inhibition of SDH was expected to lead to succinate production, but this was not observed. There was an increase in citrate and oxalate production in the wild-type strain. Furthermore, in the strain with over-expression of icl the organic acid production shifted from fumarate towards malate production when malonate was added to the cultivation medium.Overall, the icl over-expression and malonate addition had a significant impact on metabolism and on organic acid production profiles. Although the expected succinate and malate formation was not observed, a distinct and interesting production of fumarate and malate was found.  相似文献   

17.
We previously reported that the Corynebacterium glutamicum RNase E/G encoded by the rneG gene (NCgl2281) is required for the 5′ maturation of 5S rRNA. In the search for the intracellular target RNAs of RNase E/G other than the 5S rRNA precursor, we detected that the amount of isocitrate lyase, an enzyme of the glyoxylate cycle, increased in rneG knockout mutant cells grown on sodium acetate as the sole carbon source. Rifampin chase experiments showed that the half-life of the aceA mRNA was about 4 times longer in the rneG knockout mutant than in the wild type. Quantitative real-time PCR analysis also confirmed that the level of aceA mRNA was approximately 3-fold higher in the rneG knockout mutant strain than in the wild type. Such differences were not observed in other mRNAs encoding enzymes involved in acetate metabolism. Analysis by 3′ rapid amplification of cDNA ends suggested that RNase E/G cleaves the aceA mRNA at a single-stranded AU-rich region in the 3′ untranslated region (3′-UTR). The lacZ fusion assay showed that the 3′-UTR rendered lacZ mRNA RNase E/G dependent. These findings indicate that RNase E/G is a novel regulator of the glyoxylate cycle in C. glutamicum.  相似文献   

18.
Two strains of Klebsiella (SM6 and SM11) were isolated from rhizospheric soil that solubilized mineral phosphate by secretion of oxalic acid from glucose. Activities of enzymes for periplasmic glucose oxidation (glucose dehydrogenase) and glyoxylate shunt (isocitrate lyase and glyoxylate oxidase) responsible for oxalic acid production were estimated. In presence of succinate, phosphate solubilization was completely inhibited, and the enzymes glucose dehydrogenase and glyoxylate oxidase were repressed. Significant activity of isocitrate lyase, the key enzyme for carbon flux through glyoxylate shunt and oxalic acid production during growth on glucose suggested that it could be inducible in nature, and its inhibition by succinate appeared to be similar to catabolite repression.  相似文献   

19.
A two step biological process for the conversion of grass biomass to the biodegradable polymer medium chain length polyhydroxyalkanoate (mcl-PHA) was achieved through the use of anaerobic and aerobic microbial processes. Anaerobic digestion (mixed culture) of ensiled grass was achieved with a recirculated leach bed bioreactor resulting in the production of a leachate, containing 15.3 g/l of volatile fatty acids (VFAs) ranging from acetic to valeric acid with butyric acid predominating (12.8 g/l). The VFA mixture was concentrated to 732.5 g/l with a 93.3 % yield of butyric acid (643.9 g/l). Three individual Pseudomonas putida strains, KT2440, CA-3 and GO16 (single pure cultures), differed in their ability to grow and accumulate PHA from VFAs. P. putida CA-3 achieved the highest biomass and PHA on average with individual fatty acids, exhibited the greatest tolerance to higher concentrations of butyric acid (up to 40 mM) compared to the other strains and exhibited a maximum growth rate (μMAX?=?0.45 h?1). Based on these observations P. putida CA-3 was chosen as the test strain with the concentrated VFA mixture derived from the AD leachate. P. putida CA-3 achieved 1.56 g of biomass/l and accumulated 39 % of the cell dry weight as PHA (nitrogen limitation) in shake flasks. The PHA was composed predominantly of 3-hydroxydecanoic acid (>65 mol%).  相似文献   

20.
We have studied the accumulation kinetics and physical characteristics of the poly(3-hydroxyalkanoates) (PHAs) formed by several Pseudomonas strains, mutants and recombinants. Although PHA synthesis generally begins only after an essential nutrient such as N, P, S or Mg becomes limiting, we have identified at least one strain (P. putida KT2442) that begins producing PHA during the exponential growth phase. This PHA is chemically and physically identical to that produced by P. oleovorans GPol, the strain in which we first identified PHA. Analysis of the PHA formed by a mutant strain defective in PHA degradation (P. oleovorans GPo500) revealed that the molecular mass (Mw), the monomer composition and thermal characteristics were similar to that of the PHA of the wild-type parent strain P. oleovorans GPo1. The pha locus of P. oleovorans encodes enzymes that are involved in PHA biosynthesis and degradation. It has been subcloned to study the two PHA polymerases separately in a PHA mutant (GPp104) derived from P. putida KT2442. The recombinant strains accumulated lower PHA levels than the wild-type strains, and the Mw of these polymers were lower than those produced by the wild-type P. oleovorans and parent strain. The monomer composition of the two PHAs formed by the two PHA polymerases differed, indicating that the PHA polymerases have different substrate specificities for the incorporation of 3-hydroxyoctanoate and 3-hydroxyhexanoate monomers into PHA. Despite these differences, the PHAs formed were essentially indistinguishable from wild-type PHAs with respect to their thermal characteristics.Correspondence to: B. Witholt  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号