首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The four eyes of the prolecithophoran Allostoma sp. are disposed in two pairs in a dorsolateral position at the periphery of the brain and beneath its capsule. They are rhabdomeric pigment-cup ocelli. Each eye in the anterior pair consists of one pigment cell and one receptor cell; each in the posterior pair is made up of a larger, single pigment cell and two photoreceptor cells. A lens in front of the pigment cell's aperture is formed by electron-dense, refractive, finger-like protrusions which arise from unpigmented cytoplasmic extensions of the pigment-cup margin. Degenerative signs are sometimes visible in the lens.  相似文献   

2.
The excretory organs of the freshwater polychaete Hypania invalida have been examined using scanning and transmission electron microscopy. Three pairs of macroscopically and ultrastructurally different nephridia are present in the thorax. Intersegmental septa in the thorax are absent, with the exception of a single diaphragm between second and third chaetiger. The first pair of nephridia is anterior to this septum, the second pair crosses the septum, with the nephrostomes anterior and the ducts and the nephridiopori posterior to it, and the third pair of nephridia is entirely posterior to the diaphragm. The first two pairs of nephridia have ciliated nephrostomes of moderate size and long nephridial ducts that extend the length of the thorax. In contrast, the third pair is characterized by short ducts and very prominent nephrostomes. Macroscopically, seven different sections of nephridial duct cells can be distinguished along the length of the first two pairs of nephridia, whereas, on an ultrastructural basis, only six different regions can be identified. Only two regions of different duct cells can be recognized in the third pair of nephridia. Cells of the two anterior pairs of nephridia show typical characteristics of transport epithelia and most likely function as excretory organs. In contrast, the duct cells of the third pair are not that much differentiated and might primarily be responsible for the release of sexual products, as sperm was observed passing through these ducts. Podocyte‐like cells were observed to accompany nephridial ducts. J. Morphol., 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

3.
Among polychaetes, the errant forms are the only group known so far possessing true multicellular eyes in adults which are preceded by bicellular larval eyes in many species. Most likely, two pairs of such eyes showing a specific structure belong to the ground pattern of Errantia = Aciculata. However, these eyes have primarily been investigated in only two subgroups of Errantia, but data on the third main taxon, Eunicida, are available for only two taxa. In the present investigation, the eyes in two additional species of Eunicida, the dorvilleids Protodorvillea kefersteini and Schistomeringos neglecta, were studied. In P. kefersteini, usually described as possessing one pair of small eyes, two pairs could be detected, whereas in S. neglecta only one pair was found. Each eye is made up of rhabdomeric photoreceptor cells, pigment cells and unpigmented supportive cells. Lenses or vitreous bodies are absent. From their structure most likely all eyes represent adult eyes and even the small anterior eyes in P. kefersteini structurally resemble miniaturized adult eyes. Neither persisting larval eyes nor unpigmented rhabdomeric ocelli were found in the two species. The observations in Dorvilleidae confirm the hypothesis of a common origin of adult eyes in Errantia.  相似文献   

4.
Summary Differences in the ultrastructure of presumed photoreceptors of three morphologically similar Microphthalmus populations on the opposite sides of the Atlantic (German North Sea coast and coasts of North Carolina and Massachusetts) suggest the existence of three different species. Only the European M. listensis possesses three pairs of prostomial eyes, of which one pair has rhabdomeric receptors and pigment cells. The two other pairs are unpigmented and can be found in all three species. The frontal one has ciliary receptors, the posterior one rhabdomeric sensory cells. An additional unpaired potential photoreceptor organ in the segment with the first pair of tentacular cirri is present in all individuals of this species complex. It has a relatively high number of cilia with numerous microvillar projections. — For each type of ocellus there are slight but distinct and constant differences among the species such as relative position of sensory cells, presence of dilations of the ciliary shafts, number of cilia, and shape of the sensory cells. Presence of both ciliary and rhabdomeric light-sensitive cells is discussed with reference to various theories of the evolution of photoreceptors.Abbreviations ax axonema - bb basal body - cc cup cell - ci cilium - cu cuticle - epc epidermal cell - g Golgi apparatus - gp glycogen particles - mi mitochondrion - mv microvilli - mvb multivesicular body - nu nucleus - pc pigment cell - pg pigment granule - rer rough ER - smc submicrovillar cysternae - sr striated rootlet  相似文献   

5.
In P. transvaalicus nymphs, 5 pairs of lateral ocelli each composed of a corneal lens, R-cell units forming a latticed rhabdom, arhabdomeric cells and pigment cells are present. In addition, we found a pair of unpigmented accessory sense organs situated ventroposteriorly to the lateral ocelli in prenymphs as well as in first nymphs. They are composed of primary, rhabdomeric sensory cells, and we infer that they represent a second type of lateral eye. They also comprise sensory units, but lenses and screening pigment are lacking. Their position and cellular architecture corresponds well with that of the “rudimentary” lateral eye of the xiphosuran, Limulus. The occurrence of a bipartite lateral visual system in Chelicerata and Arthropoda is discussed.  相似文献   

6.
Abstract. The phylogenetic position of Polygordius is still pending; relationships with either Opheliidae or with Saccocirrus are the most favored hypotheses. The present study of Polygordius appendiculatus was designed to look for morphological characters supporting either of these two hypotheses. The homology of the anterior appendages, and the structure of the central nervous system and nuchal organ all required clarification; we also examined whether photoreceptor‐like sense organs exist in adults. From their innervation pattern, it is likely that the anterior appendages represent palps. They lack structures typical of palps in Canalipalpata, such as musculature and coelomic cavities, which would be expected in the case of a saccocirrid relationship. Thirteen photoreceptor‐like sense organs were found in front of the brain, the only structures resembling photoreceptors in adults of P. appendiculatus. These multicellular sense organs comprise a supportive cell and several sensory cells enclosing an extracellular cavity. There are three different types of sensory cells: one rhabdomeric and two ciliary. These sensory cells are combined differently into three forms of sense organ: the most frequent uses all three types of sensory cells, the second possesses one rhabdomeric and one ciliary cell type, and the third has two types of ciliary sensory cells. Whereas similar sensory cells are frequently found in various polychaetes, their combination in one sensory organ is unique to Polygordius and is considered to represent an autapomorphy. The nuchal organs exhibit features typical of polychaetes; there are no specific features in common with Saccocirrus. Instead, the covering structures show obvious similarities to Opheliidae, as can also be found in the central nervous system. Altogether, the current observations do not contradict a relationship with opheliids but provide no evidence of a relationship with Saccocirrus as has been found in certain molecular analyses, and thus currently leave the phylogenetic position of Polygordius unresolved.  相似文献   

7.
The microstructural organization of the silk‐spinning apparatus of the comb‐footed spider, Achaearanea tepidariorum, was observed by using a field emission scanning electron microscope. The silk glands of the spider were classified into six groups: ampullate, tubuliform, flagelliform, aggregate, aciniform and pyriform glands. Among these, three types of silk glands, the ampullate, pyriform and aciniform glands, occur only in female spiders. One (adult) or two (subadult) pairs of major ampullate glands send secretory ductules to the anterior spinnerets, and another pair of minor ampullate glands supply the median spinnerets. Three pairs of tubuliform glands in female spiders send secretory ductules to the median (one pair) and posterior (two pairs) spinnerets. Furthermore, one pair of flagelliform glands and two pairs of aggregate glands together supply the posterior spinnerets, and form a characteristic spinning structure known as a “triad” spigot. In male spiders, this combined apparatus of the flagelliform and the aggregate spigots for capture thread production is not apparent, instead only a non‐functional remnant of this triad spigot is present. In addition, the aciniform glands send ductules to the median (two pairs) and the posterior spinnerets (12–16 pairs), and the pyriform glands feed silk into the anterior spinnerets (90–100 pairs in females and 45–50 pairs in males).  相似文献   

8.
Scanning and transmission electron microscopy (SEM and TEM) were used to study lattice organs in facetotectan y‐cyprids from the White Sea and from Norwegian and Bahamian waters. The larvae represent at least four and possibly five different species of Facetotecta. Y‐cyprids have five pairs of lattice organs in the head shield (carapace) organized into two anterior pairs and three posterior pairs. Both groups of lattice organs are arranged around a large central pore. The facetotectan lattice organs are elongate areas with a longitudinal keel, just as in the Ascothoracida and some Cirripedia Acrothoracica. The terminal pore of the organs is situated posteriorly in all five pairs. TEM confirms that the organs have the same general morphology as in the Cirripedia and Ascothoracida, namely, a cuticular chamber into which project ciliary segments from the chemosensory cells. Unlike Cirripedia the cuticular roof of the chamber lacks any pores. We conclude that five pairs of lattice organs represent an autapomorphy for the Thecostraca, which supports the monophyly of this taxon. In the ground pattern the terminal pore is posterior in all five pairs. The anterior position of the pore in lattice organ pair 2 is apomorphic for the Cirripedia, while within this taxon an anterior position also in pair 1 is apomorphic for a monophylum comprising the Thoracica and the Rhizocephala. Minute pores in the roof of the organs is another apomorphy of the Cirripedia, but its elaboration into pores visible with SEM may have been subject to some homoplasy. Since lattice organs are omnipresent in the settling instar of the Thecostraca they probably serve a critical role for the function of these cypris or cypris‐like larvae.  相似文献   

9.
The stemmata of the first-instar larvae of Mantispa sp. (Neuroptera) were studied by scanning (SEM) and transmission (TEM) electron microscopy. These preparasitic larvae have a pair of anterior eyes and a single posterior eye on each side of the head. Each eye possesses an outer lens; beneath it, there is a well-developed crystalline body and a 3-tiered retina made up of a maximum of 12 sensory cells. The central fused rhabdom appears always to be composed of 4 sensory cells, each filled with pigment granules. The nuclear region shows Golgi bodies and abundant rough endoplasmic reticulum; the rhabdomeric regions contain vesicles, prominent multi-vesicular bodies and lysosomes. The eyes, whether double or single, are surrounded by a perineurium, to which muscle cells are attached.  相似文献   

10.
The phylogenetic position of Orbiniidae within Annelida is unresolved. Conflicting hypotheses place them either in a basal taxon Scolecida, close to Spionida, or in a basal position in Aciculata. Because Aciculata have a specific type of eye, the photoreceptive organs in the orbiniid Scoloplos armiger were investigated to test these phylogenetic hypotheses. Two different types of prostomial photoreceptor‐like sense organs were found in juveniles and one additional in subadults. In juveniles there are four ciliary photoreceptor‐like phaosomes with unbranched cilia and two pigmented eyes. The paired pigmented eyes lie beside the brain above the circumoesophageal connectives. Each consists of one pigmented cell, one unpigmented supportive cell and three everse rhabdomeric sensory cells with vestigial cilia. During development the number of phaosomes increases considerably and numerous unpigmented sense organs appear consisting of one rhabdomeric photoreceptor cell and one supportive cell. The development and morphology of the pigmented eyes of S. armiger suggest that they represent miniaturized eyes of the phyllodocidan type of adult eye rather than persisting larval eyes resulting in small inverse eyes typical of Scolecida. Moreover, the structure of the brain indicates a loss of the palps. Hence, a closer relationship of Orbiniidae to Phyllodocida is indicated. Due to a still extensive lack of ultrastructural data among polychaetes this conclusion cannot be corroborated by considering the structure of the unpigmented ciliary and rhabdomeric photoreceptor‐like sense organs. J. Morphol., 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

11.
We present data on the haemolymph vascular system (HVS) in four representatives of the major amphipod lineages Gammaridea, Hyperiidea and Caprellidea based on corrosion casting and three‐dimensional reconstructions of histological semi‐thin sections. In all these species the HVS comprises a dorsal pulsatile heart, which is continued in the body axis by the anterior and posterior aortae. The heart is equipped with three pairs of incurrent ostia. The number of cardiac arteries that lead off the heart varies among species: in the studied Gammaridea four pairs occur, in Hyperia galba only the three posterior pairs of cardiac arteries occur, while in Caprella mutica cardiac arteries are absent. In all the studied species the posterior aorta leads as a simple tube into the pleon attached to the dorsal diaphragm. The anterior aorta runs from its origin in the anterior part of the second thoracic segment into the cephalothorax. Both pairs of antennae have an arterial supply off the anterior aorta. An overview of previously studied species including our present findings shows the amphipod HVS to be relatively uniform and the gammarid form is discussed as being closest to the ground pattern of Amphipoda.  相似文献   

12.
Lattice organs are peculiar chemoreceptors found only in the Crustacea Thecostraca (Facetotecta, Ascothoracida, Cirripedia). In these taxa, five pairs occur in the head shield (carapace) of the terminal larval instar (y-cyprid, ascothoracid larva, cyprid), which is the settlement stage. Lattice organs represent an autapomorphy for the Thecostraca but their evolutionary origin and possible homologues in other Crustacea remain obscure. We have used scanning electron microscopy to describe the setation pattern of the head shield in late nauplii of one species of Ascothoracida, one species of Facetotecta and several species of the Cirripedia Thoracica, Acrothoracica, and Rhizocephala. The naupliar head shield always carries two pairs setae situated anteriorly near the midline. Each of these setae carry a single pore, and positional, structural and ontogenetic evidence show that these setae are homologous in all the examined species and that they represent precursors of the two anterior pairs of lattice organs of the succeeding larval stage, viz., the ascothoracid larva (Ascothoracida), y-cyprid (Facetotecta), and cyprid (Cirripedia). This leads us to infer that lattice organs are among the most highly modified sensilla in all Crustacea and they have in most cases lost all external resemblance to a seta. The nauplii of the Rhizocephala carry an additional three pairs of setae situated more posteriorly on the head shield and they could be precursors of the three posterior pairs of lattice organs. All other species examined lack these posterior setae, except the Facetotecta which have one posteriorly situated pair.  相似文献   

13.
Cell lineages during development of ascidian embryos were analyzed by injection of horseradish peroxidase as a tracer enzyme into identified cells at the one-, two-, four-, and eight-cell stages of the ascidians, Halocynthia roretzi, Ciona intestinalis, and Ascidia ahodori. Identical results were obtained with eggs of the three different species examined. The first cleavage furrow coincided with the bilateral symmetry plane of the embryo. The second furrow did not always divide the embryo into anterior and posterior halves as each of the anterior and posterior cell pairs gave rise to different tissues according to their destinies, which became more definitive in the cell pairs at the eight-cell stage. Of the blastomeres constituting the eight-cell stage embryo, the a4.2 pair (the anterior animal blastomeres) differentiated into epidermis, brain, and presumably sense organ and palps. Every descendant cell of the b4.2 pair (the posterior animal blastomeres) has been thought to become epidermis; however, the horseradish peroxidase injection probe revealed that the b4.2 pair gave rise to not only epidermis but also muscle cells at the caudal tip region of the developing tailbud-stage embryos. The A4.1 pair (the anterior vegetal blastomeres) developed into endoderm, notochord, brain stem, spinal cord, and also muscle cells next the caudal tip muscle cells. From the B4.1 pair (the posterior vegetal blastomeres) originated muscle cells of the anterior and middle parts of the tail, mesenchyme, endoderm, endodermal strand, and also notochord at the caudal tip region. These results clearly demonstrate that muscle cells are derived not only from the B4.1 pair, as has hitherto been believed, but also from both the b4.2 and A4.1 pairs.  相似文献   

14.
A new genus and species, Scarabacarus longisensillus gen. et sp. n., of the family Liacaridae are described from the Caucasus (Azerbaijan and Abkhazia): The new genus Scarabacarus is characterized by the highly convex body, straight anterior margin of the notogaster, narrow fusiform sensilla, the lamellae situated on the lateral margins of the prodorsum, the absence of interlamellar and notogastral setae (besides one posterior pair), presence of four pairs of genital setae, and tridactylous leg tarsi.  相似文献   

15.
Calcium bodies are internal epithelial sacs found in terrestrial isopods of the family Trichoniscidae that contain a mineralized extracellular matrix that is deposited and resorbed in relation to the molt cycle. Calcium bodies in several trichoniscids are filled with bacteria, the function of which is currently unknown. The woodlouse Hyloniscus riparius differs from other trichoniscids in that it possesses two different pairs of calcium bodies, the posterior pair being filled with bacteria and the anterior pair being devoid of bacteria. We explored the development of these organs and bacterial colonization of their lumen during the postmarsupial development with the use of optical clearing and whole-body confocal imaging of larval and juvenile stages. Our results show that calcium bodies are formed as invaginations of the epidermis in the region of intersegmental membranes during the postmarsupial development. The anterior pair of calcium bodies is generated during the first postmarsupial manca stage, whereas the posterior calcium bodies first appear in juveniles and are immediately colonized by bacteria, likely through a connection between the calcium body lumen and the body surface. Mineral is deposited in calcium bodies as soon as they are present.  相似文献   

16.
The arms and tentacles of squid (Family Loliginidae: Sepioteuthis sepioidea (Blainville), Loligo pealei (LeSueur), Loligo plei (Blainville), Loliguncula brevis (Blainville)) do not possess the hardened skeletal elements or fluid-filled cavities that typically provide skeletal support in other animals. Instead, these appendages are made up almost entirely of muscle. It is suggested here that the musculature serves as both the effector of movement and as the skeletal support system itself. High-speed movie recordings were used to observe prey capture by loliginid squid. Extension of the tentacles (1 pair) during prey capture is probably brought about by contraction of transverse muscle fibers and circular muscle fibers. Contraction of longitudinal muscle fibers causes retraction of the tentacles. Torsion of the tentacles during extension may be the result of contraction of muscle fibers arranged in a helical array. The inextensible but manipulative arms (4 pairs) may utilize a transverse muscle mass to resist the longitudinal compression caused by contraction of the longitudinal muscles which bend the arms. A composite connective tissue/muscle helical fiber array may twist the arms.  相似文献   

17.
Putative sensory structures, called lattice organs, were studied with scanning electron microscopy from ascothoracid or cypris larvae representing a wide range of families of the Ascothoracida and Cirripedia. These organs, situated dorsally on the carapace were, with few exceptions, always found in two anterior and three posterior pairs. The lattice organ morphology displayed by the Ascothoracida, a seta–like structure with a terminal pore, is believed to be the most plesiomorphic condition. Within the Cirripedia lattice organ morphology varied from types resembling the Ascothoracida in the Acrothoracica and the lepadomorph Capitulum mitella, to an elongate pore field with a larger terminal pore in most Thoracica and Rhizocephala. Akentrogonid Rhizocephala seem to display the most apomorphic condition. While lattice organ morphology was generally constant at the family level, cases were seen where closely related species such as Chthamalus stellatusand Chthamalus montaguishowed minor, but clear cut differences. Lattice organs in 2 + 3 pairs are argued to represent a synapomorphy for the Ascothoracida and the Cirripedia. The results confirm that the cyprid morphology at the ultrastructural level will prove to be of high value in estimating phylogeny within the Cirripedia.  相似文献   

18.
Rhamphichthys rostratus (L.) emits brief pulses (2 ms) repeated very regularly at 50 Hz. The electric organ shows a heterogeneous distribution of the electrocyte tubes and the occurrence of three electrocyte types (caudally innervated, rostrally innervated and marginallycaudally innervated). In the sub-opercular region the electric organ consists of a pair of tubes containing only caudally innervated electrocytes. At the abdominal region the EO consists of three pairs of tubes. Each pair contains one of the described electrocyte types. The number of electrocyte tubes increases toward the tail to reach nine or ten pairs in the most caudal segments. In the intermediate region most tubes contain doubly innervated electrocytes except the ventral pair that contains caudally innervated electrocytes. The caudal 25% contains exclusively caudally innervated electrocytes. The electric organ discharge consists of five wave components (V1 to V5). Electrophysiological data are consistent with the hypothesis that V1 results from the activity of the rostral faces of rostrally innervated electrocytes. V2 results from the activities of rostral faces of marginally-caudally innervated electrocytes while V3 results from the activities of caudal faces of most electrocytes. Curarization experiments demonstrated that V4 and V5 result from action potential invasion and are not directly elicited by neural activity.Abbreviations AEN1 anterior electromotor nerve 1 - AEN2 anterior electromotor nerve 2 - BMB boraxic methylene blue - CIE caudally innervated electrocytes - EMF electromotive force - EO electric organ - EOD electric organ discharge - I current amplitude - MCIE marginally-caudally innervated electrocytes - MT medial tubes - PEN posterior electromotor nerve - R n internal impedance - RIE rostrally innervated electrocytes - Rl load resistor - SAT short abdominal tubes - V voltage amplitude  相似文献   

19.
《Journal of morphology》2017,278(10):1421-1437
Salps are marine planktonic chordates that possess an obligatory alternation of reproductive modes in subsequent generations. Within tunicates, salps represent a derived life cycle and are of interest in considerations of the evolutionary origin of complex anatomical structures and life history strategies. In the present study, the eyes and brains of both the sexual, aggregate blastozooid and the asexual, solitary oozooid stage of Thalia democratica (Forskål, 1775 ) were digitally reconstructed in detail based on serial sectioning for light and transmission electron microscopy. The blastozooid stage of T. democratica possesses three pigment cup eyes, situated in the anterior ventral part of the brain. The eyes are arranged in a way that the optical axes of each eye point toward different directions. Each eye is an inverse eye that consists of two different cell types: pigment cells (pigc) and rhabdomeric photoreceptor cells (prcs). The oozooid stage of T. democratica is equipped with a single horseshoe‐shaped eye, positioned in the anterior dorsal part of the brain. The opening of the horseshoe‐shaped eye points anteriorly. Similar to the eyes of the blastozooid, the eye of the oozooid consists of pigment cells and rhabdomeric photoreceptor cells. The rhabdomeric photoreceptor cells possess apical microvilli that form a densely packed presumably photosensitive receptor part adjacent to the concave side of the pigc. We suggest correspondences of the individual eyes in the blastozooid stage to respective parts of the single horseshoe‐shaped eye in the oozooid stage and hypothesize that the differences in visual structures and brain anatomies evolved as a result of the aggregate life style of the blastozooid as opposed to the solitary life style of the oozooid.  相似文献   

20.
Chelimazocraes liaoi n. g., n. sp. and Chelimazocraes ascidiformis n. sp. (Monogenea: Mazocraeidae) are described from the gills of Clupanodon punctatus (Temminck & Schlegel) in Daya Bay (South China Sea). The new genus is characterised by the following features: (i) the haptor is distinctly separated from the body proper, and the arrangement of the clamps is bilaterally symmetrical but longitudinally heteromorphic; (ii) the anterior three pairs of clamps are of the mazocraeid-type, whereas the fourth pair is of a non-mazocraeid type with three sclerites; (iii) all three pairs of clamps are similar in shape but their size gradually becomes smaller from the anterior to the posterior; (iv) the inner spines of the copulatory organ have a similar shape; and (v) the testes are numerous and arranged longitudinally posterior to the ovary. The two new species are easily distinguished from other members of the Mazocraeidae by the unique structure of the fourth pair of clamps; however, there are some noticeable differences between the two species. The major differences are as follows: (i) the body of C. liaoi n. sp. is significantly larger than that of C. ascidiformis n. sp.; (ii) the anterior three pairs of clamps consist of different sclerites in the two species; and (iii) the copulatory organ has one pair of outer spines and 15–16 pieces of inner spines in C. liaoi n. sp. (vs two pairs of outer spines and 22–26 pieces of inner spines in C. ascidiformis n. sp.).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号