首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 169 毫秒
1.
Cardiorenal-endocrine responses to head-out immersion at night   总被引:1,自引:0,他引:1  
Cardiorenal-endocrine responses to 3-h head-out immersion (HOI) (water temperature = 34.5 +/- 0.5 degrees C) were studied during day (0900-1400 h) and night (2300-0400 h) in six hydropenic male human subjects. Although HOI induced a reversible increase in urine flow in all subjects, the response was faster and greater in magnitude during the day compared with night (P less than 0.05). Na excretion and osmolal clearance (Cosm) also followed the identical response pattern as urine flow, and in fact, the HOI-induced diuresis was entirely accounted for by the increased Cosm. Endogenous creatinine clearance was not different between the day and the night and remained unchanged during HOI. Both plasma renin activity and aldosterone concentration and urinary aldosterone excretion were nearly twofold greater during the day compared with night before HOI but decreased to the same level during HOI in both daytime and the nighttime series (P less than 0.05). There was no correlation between the Na excretion rate and renin-aldosterone levels either before or during HOI. Plasma antidiuretic hormone (ADH) level was comparable between day and night before HOI and decreased to a similar level during HOI in both daytime and nighttime series (P less than 0.05 for nighttime HOI). Cardiac output increased from 3.3 1/min before HOI to 5-6 1/min during HOI without showing any significant circadian difference. Hematocrit, hemoglobin, and plasma concentrations remained unchanged under all conditions. It is concluded that the renal response to HOI is subject to nocturnal inhibition, which cannot be attributed to circadian differences in the degree of HOI-induced central blood pooling, renin-aldosterone, or ADH responses.  相似文献   

2.
Changes in blood composition, renal function, aldosterone and antidiuretic hormone (ADH) concentrations were investigated in 10 untrained male subjects when swimming (60 min at a heart rate of about 155 beats.min-1, water temperature 28 degrees C) and during the subsequent 3 h in a sitting position. Many specific effects of either exercise or immersion were abolished or attenuated; no significant changes in plasma aldosterone, [ADH], [K+], [Cl-], or of urinary volume, glomerular filtration rate, free water or osmolar clearance were observed. The urine was diluted resulting in lowered [Na+]. In blood some quantities which are only slightly influenced by immersion increased during swimming ([Na+], [Lac-], [H+], osmolality, [creatinine]). Exercise induced plasma volume loss, calculated from increasing [Hb], was small (110 ml), probably because interstitial fluid enters the vascular space during the initial phase of immersion. One might anticipate that the training effects on fluid and electrolyte metabolism and circulation are different when swimming and when performing endurance sports on land.  相似文献   

3.
Since previous studies from this laboratory have demonstrated that the redistribution of blood volume and concomitant relative central hypervolemia induced by water immersion to the neck causes a profound natriuresis and a suppression of the renin-aldosterone system, it was of interest to assess whether the diuresis induced by immersion was mediated by an analogous inhibition of ADH. The effects of water immersion on renal water handling and urinary ADH excretion were assessed in 10 normal male subjects studied following 14 h of overnight dehydration on two occasions, control and immersion. The conditions of seated posture and time of day were identical. During control ADH persisted at or above prestudy values. Immersion resulted in a progressive decrease in ADH excretion from 80.1 plus or minus 7 (SEM) to 37.3 plus or minus 6.3 muU/min (P smaller than 0.025). Cessation of immersion was associated with a marked increase in ADH from 37.3 +/- 6.3 muU/min to 176.6 +/- 72.6 muU/min during the recovery hour (P smaller than 0.05). Concomitant with these changes urine osmolality decreased significantly beginning as early as the initial hour of immersion from 1044 +/- 36 to 542 +/- 66 mosmol/kg H2O during the final hour of immersion (P smaller than 0.001). Recovery was associated with a significant mean increase in Uosm of 190 +/- 40 mosmol/kg H2O over the final hour of immersion (P smaller than 0.001). The suppression of ADH occurred without concomitant changes in plasma tonicity. These studies are consistent with the suggestion that in hydrated subjects undergoing immersion suppression of ADH release contributes to the enhanced free water clearance, which has been previously documented.  相似文献   

4.
Rats were trained with two running protocols previously demonstrated to result in enhanced cardiac performance. Control groups included free-eating sedentary animals and food-restricted animals in which the body weights were the same as the runners. Calcium binding by isolated sarcoplasmic reticulum (SR) was slightly but significantly increased in SR from runners at low but not high calcium concentrations at 15 s and 1 min. Calcium uptake in the presence of 1 mM oxalate was increased in SR from runners. Actomyosin ATPase activity was increased by 10% (P less than 0.001) with one running protocol but not with the other. Myosin Ca2+ ATPase activity and actin-activated ATPase activity were also slightly increased in hearts of runners. In food-restricted cardiac actomyosin ATPase was significantly decreased. Actomyosin ATPase activity was found to be normal in hearts of sedentary animals subjected to water immersion without exercise. Therefore, physical training of rats by running, which produces a cardiac mechanical advantage similar to training by swimming, is not accompanied by cardiac biochemical changes of the same magnitude as in the hearts of swimmers.  相似文献   

5.
The trained condition is associated with alterations in fluid regulation. In attempt to elucidate mechanisms responsible for these differences, resting, postexercise (maximal treadmill exercise of 8-13 min duration), and recovery measurements were made in seven trained (mean peak O2 consumption was 60.5 +/- 1.6 ml.kg-1.min-1) and seven untrained (mean peak O2 consumption was 40.7 +/- 1.7 ml.kg-1.min-1) male subjects. Samples were obtained by venipuncture with subjects seated. No significant differences in resting plasma osmolality (Osm), sodium, potassium, antidiuretic hormone (ADH), aldosterone, renin activity, or atrial natriuretic factor were found between groups. Maximal exercise produced significant increases in all of the above variables. Values immediately postexercise were similar between groups except for plasma Osm and sodium, which were significantly higher in the untrained group. Despite a reduction in plasma volume of equal magnitude in both groups, trained subjects demonstrated an increase in vascular proteins and mean corpuscular volume during exercise. This increase in plasma protein may be an important initiating factor responsible for the elevated plasma volume after 1-h recovery from exercise in the trained group. Lastly, similar ADH responses despite lower Osm in trained subjects may indicate that training increases the sensitivity of ADH to osmotic stimulation.  相似文献   

6.
Exercise stroke volume relative to plasma-volume expansion   总被引:1,自引:0,他引:1  
The effects of plasma-volume (PV) expansion on stroke volume (SV) (CO2 rebreathing) during submaximal exercise were determined. Intravenous infusion of 403 +/- 21 ml of a 6% dextran solution before exercise in the upright position increased SV 11% (i.e., 130 +/- 6 to 144 +/- 5 ml; P less than 0.05) in untrained males (n = 7). Further PV expansion (i.e., 706 +/- 43 ml) did not result in a further increase in SV (i.e., 145 +/- 4 ml). SV was somewhat higher during supine compared with upright exercise when blood volume (BV) was normal (i.e., 138 +/- 8 vs. 130 +/- 6 ml; P = 0.08). PV expansion also increased SV during exercise in the supine position (i.e., 138 +/- 8 to 150 +/- 8 ml; P less than 0.05). In contrast to these observations in untrained men, PV expansion of endurance-trained men (n = 10), who were naturally PV expanded, did not increase SV during exercise in the upright or supine positions. When BV in the untrained men was increased to match that of the endurance-trained subjects, SV was observed to be 15% higher (165 +/- 7 vs. 144 +/- 5 ml; P less than 0.05), whereas mean blood pressure and total peripheral resistance were significantly lower (P less than 0.05) in the trained compared with untrained subjects during upright exercise at a similar heart rate. The present findings indicate that exercise SV in untrained men is preload dependent and that increases in exercise SV occur in response to the first 400 ml of PV expansion. It appears that approximately one-half of the difference in SV normally observed between untrained and highly endurance-trained men during upright exercise is due to a suboptimal BV in the untrained men.  相似文献   

7.
The purpose of this study was to investigate the covariance between perceived exertion (recorded using Borg's category-ratio scale CR-10) and the relative oxygen uptake, and lactate and ammonia concentrations in blood from a peripheral vein. Ratings of perceived exertion (RPE) at 25%, 50%, 75% and 90% maximal oxygen uptake and lactate and ammonia concentrations were compared in well-trained women distance runners (n = 22) and untrained women (n = 10). Ammonia concentrations in peripheral venous blood were significantly correlated with RPE (P less than 0.05), both in the trained and untrained women. Differences between the trained and untrained subjects occurred when the ammonia concentration increased to 148 mumol.l-1 in both groups investigated; similarly, the mean RPE correlated significantly with the lactate concentration (P less than 0.05), both in the trained and untrained women and there was a difference in RPE between groups when lactate concentration in the blood had risen to 4.4 mmol.l-1. It would seem that the correlation of blood ammonia and lactate concentrations with RPE during exercise could be a useful indicator of the development of fatigue.  相似文献   

8.
We hypothesized that the more-pronounced hypotensive and bradycardic effects of an antiorthostatic posture change from seated to supine than water immersion are caused by hydrostatic carotid baroreceptor stimulation. Ten seated healthy males underwent five interventions of 15-min each of 1) posture change to supine, 2) seated water immersion to the Xiphoid process (WI), 3) seated neck suction (NS), 4) WI with simultaneous neck suction (-22 mmHg) adjusted to simulate the carotid hydrostatic pressure increase during supine (WI + NS), and 5) seated control. Left atrial diameter increased similarly during supine, WI + NS, and WI and was unchanged during control and NS. Mean arterial pressure (MAP) decreased the most during supine (7 +/- 1 mmHg, P < 0.05) and less during WI + NS (4 +/- 1 mmHg) and NS (3 +/- 1 mmHg). The decrease in heart rate (HR) by 13 +/- 1 beats/min (P < 0.05) and the increase in arterial pulse pressure (PP) by 17 +/- 4 mmHg (P < 0.05) during supine was more pronounced (P < 0.05) than during WI + NS (10 +/- 2 beats/min and 7 +/- 2 mmHg, respectively) and WI (8 +/- 2 beats/min and 6 +/- 1 mmHg, respectively, P < 0.05). Plasma vasopressin decreased only during supine and WI, and plasma norepinephrine, in addition, decreased during WI + NS (P < 0.05). In conclusion, WI + NS is not sufficient to decrease MAP and HR to a similar extent as a 15-min seated to supine posture change. We suggest that not only static carotid baroreceptor stimulation but also the increase in PP combined with low-pressure receptor stimulation is a possible mechanism for the more-pronounced decrease in MAP and HR during the posture change.  相似文献   

9.
Plasma aldosterone and renal function in runners during a 20-day road race   总被引:1,自引:0,他引:1  
To evaluate the effects that repeated long-distance running has on plasma aldosterone concentration and urinary excretion of solutes, fifteen male runners were studied during a 20-day, 500-km road race. Venous blood samples were taken on day 1 prior to running, on day 11 after 10 days of running, on day 13 after a 70-h rest, and on day 18 after an additional five days of running. Overnight urine samples were obtained on day 10 before and after running and on days 11, 12, and 13 during the 70-h rest period. Plasma sodium concentrations on days 13 and 18 and plasma potassium concentrations on days 11 and 13 were decreased (P less than 0.05). Plasma aldosterone levels were increased on days 11 and 18 after running and returned to pre-race levels on day 13 after 70 h of rest. Plasma cortisol concentrations were not altered. The urinary excretion rates of sodium were elevated and of aldosterone were decreased after 70 h of rest. Increase in excretion rate of urinary sodium correlated with decrease in concentration of plasma aldosterone. These findings show that plasma aldosterone levels are chronically elevated with repeated long-distance running, resulting in a decrease in urinary excretion rate of sodium.  相似文献   

10.
Groups of endurance-trained masters athletes (60 +/- 2 yr), older untrained men (62 +/- 1 yr), lean older untrained men (61 +/- 2 yr), endurance-trained young athletes (26 +/- 1 yr), and young untrained men (28 +/- 1 yr) were studied to obtain information on the separate effects of age, physical activity, and body fatness on glucose tolerance and insulin sensitivity. Each subject underwent an oral 100-g glucose tolerance test. Skinfold thickness was determined at six sites. The trained groups had a higher maximum O2 uptake capacity and lower sum of skinfolds than their sedentary peers. The lean older untrained group had a sum of skinfolds similar to that of the young untrained group. The masters athletes, young athletes, and young untrained men exhibited similar glucose tolerance whereas the two older untrained groups had an almost twofold greater total area under the glucose curve (P less than 0.05). The masters and young athletes had significantly blunted plasma insulin responses compared with the other three groups (P less than 0.05). The young and the lean older untrained groups had similar plasma insulin responses with significantly lower insulin levels than the older untrained group (P less than 0.05). These results provide evidence that regularly performed vigorous exercise can, in some individuals, prevent the deterioration of glucose tolerance and insulin sensitivity with age.  相似文献   

11.
To examine the hypothesis that foot-strike hemolysis alters vascular volumes and selected hematological properties is trained athletes, we have measured total blood volume (TBV), red cell volume (RCV) and plasma volume (PV) in cyclists (n = 21) and runners (n = 17) and compared them to those of untrained controls (n = 20). TBV (ml x kg(-1)) was calculated as the sum of RCV (ml x kg(-1)) and PV (ml x kg(-1)) obtained using 51Cr and 125I-labelled albumin, respectively. Hematological assessment was carried out using a Coulter counter. Peak aerobic power (VO2peak) was measured during progressive exercise to fatigue using both cycle and treadmill ergometry. RCV was 15% higher (P < 0.05) in male cyclists [35.4 (1.0), mean (SE); n = 12] and runners [35.3 (0.98); n = 9] compared to the controls [30.7 (0.92); n = 12]. Similar differences existed between the female cyclists [28.2 (2.1); n = 9] and runners [28.4 (1.0); n = 8] compared to the untrained controls [24.9 (1.4); n = 8]. For the male athletes, PV was between 19% (cyclists) and 28% (runners) higher (P < 0.05) in the trained athletes compared to the untrained controls. The differences in PV between the female groups were not significant. Although the males had a higher (P < 0.05) TBV, RCV and PV than the females, no differences between cyclists and runners were found for either gender. Mean cell volume was not different between the athletic groups. VO2peak (ml x kg(-1) x min(-1)) was higher (P < 0.05) in both male [68.4 (1.5)] and female [54.8 (2.1)] runners when compared to the untrained males [47.1 (1.0)] and females [40.5 (2.1)]. Although differences existed between the genders in VO2peak for both cyclists and runners, no differences were found between the athletic groups within a gender. Since the vascular volumes were not different between cyclists and runners for either the males or females, foot-strike hemolysis would not appear to have an effect on that parameter. The significant correlations (P < 0.05) found between VO2peak and RCV (r = 0.64 and 0.64) and TBV (r = 0.82 and 0.63) for the males and females, respectively, suggests a role for the vascular system in realizing a high aerobic power.  相似文献   

12.
The response of plasma atrial natriuretic peptide (ANP) and urinary cGMP excretion to central hypervolemia induced by water immersion was assessed twice in five healthy male subjects, once while immersed in water to the neck for 3 h and again on a control day. Plasma ANP and urinary cGMP were measured by radioimmunoassay. Compared with the control day, overall change in plasma ANP on the immersion day was significant (p less than 0.05). In response to water immersion, plasma ANP increased from a base-line level of 13.2 +/- 3.1 (mean +/- SEM) to 24.2 +/- 5.5 pg/mL by 0.5 h of immersion and was sustained at that level throughout the immersion period. Plasma ANP returned to the base-line level at 1 h postimmersion. Urinary cGMP excretion increased significantly by 1 h of immersion and was sustained at that level throughout water immersion and 1 h postimmersion (p less than 0.05). During water immersion urine flow, urinary sodium and potassium excretion, free water clearance, and osmolar clearance increased while plasma renin activity, serum aldosterone, and blood pressure fell; all changes were significant (p less than 0.05). Creatinine clearance and hematocrit did not show any significant changes. These data suggest that an increase in plasma ANP may contribute to the natriuretic and diuretic response to central hypervolemia, and that the measurement of urinary cGMP may be a valuable marker of ANP biological responsiveness.  相似文献   

13.
Metabolic changes following eccentric exercise in trained and untrained men   总被引:10,自引:0,他引:10  
The effects of one 45-min bout of high-intensity eccentric exercise (250 W) were studied in four male runners and five untrained men. Plasma creatine kinase (CK) activity in these runners was higher (P less than 0.001) than in the untrained men before exercise and peaked at 207 IU/ml 1 day after exercise, whereas in untrained men the maximum was 2,143 IU/ml 5 days after exercise. Plasma interleukin-1 (IL-1) in the trained men was also higher (P less than 0.001) than in the untrained men before exercise but did not significantly increase after exercise. In the untrained men, IL-1 was significantly elevated 3 h after exercise (P less than 0.001). In the untrained group only, 24-h urines were collected before and after exercise while the men consumed a meat-free diet. Urinary 3-methylhistidine/creatinine in the untrained group rose significantly from 127 mumol/g before exercise to 180 mumol/g 10 days after exercise. The results suggest that in untrained men eccentric exercise leads to a metabolic response indicative of delayed muscle damage. Regularly performed long distance running was associated with chronically elevated plasma IL-1 levels and serum CK activities without acute increases after an eccentric exercise bout.  相似文献   

14.
We tested the hypothesis that 1-desamino-8-D-arginine vasopressin (DDAVP), a V2-receptor agonist, could inhibit the diuresis induced by water immersion in humans. Water and electrolyte excretion, plasma atrial natriuretic factor concentration, and plasma aldosterone concentration were measured initially and after 3 h of water immersion in 13 healthy sodium-replete men given either placebo or 20 micrograms of intranasal DDAVP. Guanosine 3',5'-cyclic monophosphate and urea excretion and urine osmolality were also determined. DDAVP inhibited the diuresis induced by water immersion in men: 758 +/- 168 (SE) ml/3 h in the placebo group vs. 159 +/- 28 ml/3 h in the DDAVP group (P less than 0.05). After 3 h of water immersion, plasma atrial natriuretic factor concentrations were increased from 11 +/- 2 to 20 +/- 4 pg/ml in the placebo group and from 14 +/- 2 to 33 +/- 4 pg/ml in the DDAVP group (P less than 0.05). Plasma aldosterone concentrations were decreased from 98 +/- 18 to 45 +/- 6 pg/ml in the placebo group (P less than 0.05) and from 54 +/- 17 to 25 +/- 5 pg/ml in the DDAVP group (P less than 0.05). Despite these changes in aldosterone and atrial natriuretic factor concentrations, which should increase sodium excretion, DDAVP decreased the natriuresis induced by water immersion in humans: 56 +/- 8 meq Na+/3 h in the placebo group vs. 36 +/- 6 meq Na+/3 h in the DDAVP group (P less than 0.05). DDAVP may be used to prevent the diuresis associated with central redistribution of blood volumes that occur during water immersion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The hypothesis was tested that cardiac output (CO) and stroke volume (SV) are increased by a moderate physiological elevation in sodium intake with a more pronounced effect in the ambulatory upright seated than supine position. Fourteen healthy males were investigated during ambulatory and controlled laboratory conditions at the end of two consecutive 5-day periods with sodium intakes of 70 (low) and 250 (high) mmol/24 h or vice versa, respectively. Comparing high and low sodium intake, plasma volume and plasma protein concentrations were 9 and 8% higher in the seated and the supine position, respectively. When seated during laboratory conditions, CO was 5.3 +/- 0.2 l/min on the high sodium intake vs. 4.8 +/- 0.2 l/min on the low (P < 0.05), and SV was 81 +/- 3 vs. 68 +/- 3 ml (P < 0.05). In the supine position, SV was 107 +/- 3 ml on the high vs. 99 +/- 3 ml (P < 0.05) on the low sodium intake, while CO remained unchanged. The difference in CO and SV induced by the change in sodium intake was significantly higher in the seated than in the supine position (P < 0.05). During upright ambulatory conditions, CO was 5.9 +/- 0.2 l/min during the high and 5.2 +/- 0.2 l/min during the low sodium intake (P < 0.05), and SV was 84 +/- 3 and 69 +/- 3 ml (P < 0.05), respectively. Mean arterial pressure was unchanged by the variations in sodium intake. In conclusion, increments in sodium intake within the normal physiological range increase CO and SV and more so in the seated vs. the supine position. These changes are readily detectable during upright, ambulatory conditions. The results indicate that the higher SV and CO could constitute an arterial baroreflex stimulus for the augmented renal sodium excretion.  相似文献   

16.
The effects of different physical training regimes on the plasma catecholamine values at rest and the density and responsiveness of adrenergic receptors at rest were investigated. The changes during well-defined training periods of swimmers, long-distance runners, weight lifters and wrestlers were compared with untrained male volunteers. The training of swimmers and long-distance runners, building up endurance, resulted in a significantly lower basal plasma norepinephrine (NE) concentration and a significantly or possibly lower ratio NE:EPI (epinephrine). Both values indicated reduced sympathetic activity and resulted also in a significantly lower beta-receptor density and a higher alpha 2-receptor sensitivity compared with the other groups investigated. However, swimming-specific characteristics provoked labile hypertensive blood pressure regulation with an unchanged heart rate in swimmers. Static training of weight lifters, building up power, also led to a lower NE concentration compared with untrained subjects, whereas beta-receptor density was unchanged and alpha 2-receptor density and sensitivity were decreased. Elevated blood pressure values were observed in weight lifters and swimmers due to a reduced baroreceptor sensitivity. The dynamic training of wrestlers affected only basal heart rate and alpha 2-receptor sensitivity, both of which were decreased. Different kinds of physical training caused various adaptations of the basal activity of the autonomic nervous system in which adrenergic receptors also became adapted. In this context, the stronger adrenergic circulatory component of overall sympathetic activity at rest in swimmers and long-distance runners resulted in lower beta-receptor density, and the reduced noradrenergic component sensitized alpha 2-receptors.  相似文献   

17.
We investigated the effects of endurance and high-intensity training periods on the plasma catecholamine (CA) concentration at rest; on the basal alpha- and beta-adrenoceptor density, regulation, and function on circulating cells; and on the cardiovascular adaptation in long-distance runners and swimmers. The findings of each period were compared with those of untrained men. Endurance training of the long-distance runners and the swimmers led both to a reduced sympathetic activity at rest, indicated by lower CA values, and to a lower beta-receptor density and responsiveness on circulating lymphocytes and an increased alpha 2-receptor sensitivity on circulating platelets. During the high-intensity training period beta-receptor density and responsiveness increased, alpha 2-receptor sensitivity normalized, and heart rate as well as blood pressure values increased in both trained groups. The basal sympathetic activity remained reduced, but the norepinephrine-to-epinephrine (NE/EPI) ratio increased. The NE/EPI ratio might play an important part in the regulation of adrenoceptor density during these different training periods. Swimming-specific characteristics caused different physiological impacts compared with running training, but an attenuated baroreceptor sensitivity might be indicated in both intensively trained groups.  相似文献   

18.
We examined the oxidative and antioxidant enzyme activities in respiratory and locomotor muscles in response to endurance training in young and aging rats. Young adult (4-mo-old) and old (24-mo-old) female Fischer 344 rats were divided into four groups: 1) young trained (n = 12), 2) young untrained (n = 12), 3) old trained (n = 10), and 4) old untrained (n = 6). Both young and old endurance-trained animals performed the same training protocol during 10 wk of continuous treadmill exercise (60 min/day, 5 days/wk). Compared with young untrained animals, the young trained group had significantly elevated (P less than 0.05) activities of 3-hydroxyacyl-CoA dehydrogenase (HADH), glutathione peroxidase (GPX), and citrate synthase (CS) in both the costal diaphragm and the plantaris muscle. In contrast, training had no influence (P greater than 0.05) on the activity of lactate dehydrogenase within the costal diaphragm in young animals. In the aging animals, training did not alter (P greater than 0.05) activities of CS, HADH, GPX, or lactate dehydrogenase in the costal diaphragm but significantly (P less than 0.05) increased CS, HADH, and GPX activities in the plantaris muscle. Furthermore, training resulted in higher activities of CS and HADH in the intercostal muscles in the old trained than in the old untrained animals. Finally, activities of CS, HADH, and GPX were significantly (P less than 0.05) lower in the plantaris in the old untrained than in the young untrained animals; however, CS, HADH, and GPX activities were greater (P less than 0.05) in the costal diaphragm in the old sedentary than in the young untrained animals.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Atrial natriuretic peptide in acute mountain sickness   总被引:2,自引:0,他引:2  
To test the hypothesis that elevated atrial natriuretic peptide (ANP) may be involved in altered fluid homeostasis at high altitude, we examined 25 mountaineers at an altitude of 550 m and 6, 18, and 42 h after arrival at an altitude of 4,559 m, which was climbed in 24 h starting from 3,220 m. In 14 subjects, symptoms of acute mountain sickness (AMS) were absent or mild (group A), whereas 11 subjects had severe AMS (group B). Fluid intake was similar in both groups. In group B, urine flow decreased from 61 +/- 8 (base line) to 36 +/- 3 (SE) ml/h (maximal decrease) (P less than 0.05) and sodium excretion from 7.9 +/- 0.9 to 4.6 +/- 0.7) mmol.l-1.h-1 (P less than 0.05); ANP increased from 31 +/- 4 to 87 +/- 26 pmol/l (P less than 0.001), plasma aldosterone from 191 +/- 27 to 283 +/- 55 pmol/l (P less than 0.01 compared with group A), and antidiuretic hormone (ADH) from 1.0 +/- 0.1 to 2.9 +/- 1.2 pmol/l (P = 0.08 compared with group A). These variables did not change significantly in group A, with the exception of a decrease in plasma aldosterone from 189 +/- 19 to 111 +/- 17 pmol/l (P less than 0.01). There were no measurable effects of elevated ANP on natriuresis, cortisol, or blood pressure. The reduced diuresis in AMS may be explained by increased plasma aldosterone and ADH overriding the expected renal action of ANP. The significance of elevated ANP in AMS remains to be established.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Exaggerated ANF response to exercise in middle-aged vs. young runners   总被引:2,自引:0,他引:2  
Hormonal, electrolyte, and renal responses were measured before, during, and after a marathon (42.2 km) in 14 runners: 8 young (Y) (mean age 27.8 yr) and 6 middle aged (MA) (mean aged 46.7 yr). No differences between groups in prerun values for heart rate (HR), plasma osmolality (OSM), antidiuretic hormone (ADH), aldosterone (ALDO), atrial natriuretic factor (ANF), or plasma renin activity (PRA) were found. Renal and urinary measurements were also similar between groups before the marathon. After 10 km of running, both groups had significant increases in HR, ALDO, ANF, and PRA, while OSM, Na+, and ADH remained unchanged from prerun values. The increase in plasma ANF concentrations at this point was significantly greater in the MA subjects compared with the Y (mean increase 104.1 vs. 42.8 pg/ml, respectively; P less than 0.01). Immediate postmarathon values for OSM, ADH, and Na+ were significantly higher than initial values in both groups, while HR, PRA, and ALDO continued to increase above the elevated levels found at 10 km. ANF values immediately postmarathon remained higher than prerun concentrations but were significantly reduced from those obtained at 10 km. In contrast, HR continued to rise until the completion of the run. These data are consistent with recent reports of an exaggerated ANF response in older subjects in response to central blood volume expansion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号