首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
N Gomez  S Traverse  P Cohen 《FEBS letters》1992,314(3):461-465
A MAP kinase kinase kinase (MAPKKK) was identified in phaeochromocytoma (PC12) cells which reactivated homogeneous MAP kinase kinase (MAPKK) from rabbit skeletal muscle that had been inactivated by incubation with protein phosphatase 2A. Reactivation was accompanied by stoichiometric phosphorylation of MAPKK on a serine residue(s). Following stimulation of PC12 cells with nerve growth factor and chromatography of the extracts on Mono Q, MAP kinase and MAPKK were detected as active phosphorylated enzymes, whereas MAPKKK was inactive and only activated after prolonged storage at 4 degrees C. The results suggest that the activation of MAPKKK by growth factors is likely to occur by a non-covalent mechanism.  相似文献   

2.
Many growth factors whose receptors are protein tyrosine kinases stimulate the MAP kinase pathway by activating first the GTP-binding protein Ras and then the protein kinase p74raf-1. p74raf-1 phosphorylates and activates MAP kinase kinase (MAPKK). To understand the mechanism of activation of MAPKK, we have identified Ser217 and Ser221 of MAPKK1 as the sites phosphorylated by p74raf-1. This represents the first characterization of sites phosphorylated by this proto-oncogene product. Ser217 and Ser221 lie in a region of the catalytic domain where the activating phosphorylation sites of several other protein kinases are located. Among MAPKK family members, this region is the most conserved, suggesting that all members of the family are activated by the phosphorylation of these sites. A 'kinase-dead' MAPKK1 mutant was phosphorylated at the same residues as the wild-type enzyme, establishing that both sites are phosphorylated directly by p74raf-1, and not by autophosphorylation. Only the diphosphorylated form of MAPKK1 (phosphorylated at both Ser217 and Ser221) was detected, even when the stoichiometry of phosphorylation by p74raf-1 was low, indicating that phosphorylation of one of these sites is rate limiting, phosphorylation of the second then occurring extremely rapidly. Ser217 and Ser221 were both phosphorylated in vivo within minutes when PC12 cells were stimulated with nerve growth factor. Analysis of MAPKK1 mutants in which either Ser217 or Ser221 were changed to glutamic acid, and the finding that inactivation of maximally activated MAPKK1 required the dephosphorylation of both serines, shows that phosphorylation of either residue is sufficient for maximal activation.  相似文献   

3.
Signaling through MAP kinase networks in plants   总被引:13,自引:0,他引:13  
Protein phosphorylation is the most important mechanism for controlling many fundamental cellular processes in all living organisms including plants. A specific class of serine/threonine protein kinases, the mitogen-activated protein kinases (MAP kinases) play a central role in the transduction of various extra- and intracellular signals and are conserved throughout eukaryotes. These generally function via a cascade of networks, where MAP kinase (MAPK) is phosphorylated and activated by MAPK kinase (MAPKK), which itself is activated by MAPKK kinase (MAPKKK). Signaling through MAP kinase cascade can lead to cellular responses including cell division, differentiation as well as response to various stresses. In plants, MAP kinases are represented by multigene families and are organized into a complex network for efficient transmission of specific stimuli. Putative plant MAP kinase cascades have been postulated based on experimental analysis of in vitro interactions between specific MAP kinase components. These cascades have been tested in planta following expression of epitope-tagged kinases in protoplasts. It is known that signaling for cell division and stress responses in plants are mediated through MAP kinases and even auxin, ABA and possibly ethylene and cytokinin also utilize a MAP kinase pathway. Most of the biotic (pathogens and pathogen-derived elicitors) including wounding and abiotic stresses (salinity, cold, drought, and oxidative) can induce defense responses in plants through MAP kinase pathways. In this article we have covered the historical background, biochemical assay, activation/inactivation, and targets of MAP kinases with emphasis on plant MAP kinases and the responses regulated by them. The cross-talk between plant MAP kinases is also discussed to bring out the complexity within this three-component module.  相似文献   

4.
MAP kinases (MAPK) are serine/threonine kinases which are activated by a dual phosphorylation on threonine and tyrosine residues. Their specific upstream activators, called MAP kinase kinases (MAPKK), constitute a new family of dual-specific threonine/tyrosine kinases, which in turn are activated by upstream MAP kinase kinase kinases (MAPKKK). These three kinase families are successively stimulated in a cascade of activation described in various species such as mammals, frog, fly, worm or yeast.In mammals, the MAP kinase module lies on the signaling pathway triggered by numerous agonists such as growth factors, hormones, lymphokines, tumor promoters, stress factors, etc. Targets of MAP kinase have been characterize tin all subcellular compartments. In yeast, genetic epistasis helped to characterize the presence of several MAP kinase modules in the same system. By complementation tests, the relationships existing between phylogenetically distant members of each kinase family have been described. The roles of the MAP kinase cascade have been analyzed by engineering various mutations in the kinases of the module. The MAP kinase cascade has thus been implicated in higher eukaryotes in cell growth, cell fate and differentiation, and in low eukaryotes, in conjugation, osmotic stress, cell wall constrct and mitosis.  相似文献   

5.
Summry— Numerous studies have been published these last few years on the involvement of MAP kinases in signal transduction reflecting their importance in cell cycle and cell growth controls. The identification and the characterization of their direct upstream activator has considerably enlarged our understanding of the phosphorylation network. The MAP kinase kinases (MAPKKs) are dual-specificity protein kinases which phosphorylate and activate MAP kinases. To date, MAPKK homologues have been found in yeast, invertebrates, amphibians, and mammals. Moreover, the MAPKK/MAPK phosphorylation switch constitutes a basic module activated in distinct pathways in yeast and in vertebrates. MAPKK regulation studies have led to the discovery of at least four MAPKK convergent pathways in higher organisms. One of these is similar to the yeast pheromone response pathway which includes the ste11 protein kinase. Two other pathways require the activation of either one or both of the serine/threonine kinase-encoded oncogenes c-Raf-I and c-Mos. Additionally, recent studies suggest a possible effect of the cell cycle control regulatory cyclin-dependent kinase 1 (cdc2) on MAPKK activity. Finally, MAPKKs seem to be essential transducers through which signals must pass before reaching the nucleus.  相似文献   

6.
Several protein kinases, including Mos, maturation-promoting factor (MPF), mitogen-activated protein (MAP) kinase, and MAP kinase kinase (MAPKK), are activated when Xenopus oocytes enter meiosis. De novo synthesis of the Mos protein is required for progesterone-induced meiotic maturation. Recently, bacterially synthesized maltose-binding protein (MBP)-Mos fusion protein was shown to be sufficient to initiate meiosis I and MPF activation in fully grown oocytes in the absence of protein synthesis. Here we show that MAP kinase is rapidly phosphorylated and activated following injection of wild-type, but not kinase-inactive mutant, MBP-Mos into fully grown oocytes. MAP kinase activation by MBP-Mos occurs within 20 min, much more rapidly than in progesterone-treated oocytes. The MBP-Mos fusion protein also activates MPF, but MPF activation does not occur until approximately 2 h after injection. Extracts from oocytes injected with wild-type but not kinase-inactive MBP-Mos contain an activity that can phosphorylate MAP kinase, suggesting that Mos directly or indirectly activates a MAPKK. Furthermore, activated MBP-Mos fusion protein is able to phosphorylate and activate a purified, phosphatase-treated, rabbit muscle MAPKK in vitro. Thus, in oocytes, Mos is an upstream activator of MAP kinase which may function through direct phosphorylation of MAPKK.  相似文献   

7.
Molecular aspects of mechanical stress-induced cardiac hypertrophy   总被引:1,自引:0,他引:1  
To elucidate the signal transduction pathway from external stimuli to nuclear gene expression in mechanical stress-induced cardiac hypertrophy, we examined the time course of activation of protein kinases such as Raf-1 kinase (Raf-1), mitogen-activated protein kinase kinase (MAPKK), MAP kinases (MAPKs) and 90-kDa ribosomal S6 kinase (p90rsk) in neonatal rat cardiomyocytes. Mechanical stretch rapidly activated Raf-1 and its maximal activation was observed at 1–2 min after stretch. The activity of MAPKK was also increased by stretch, with a peak at 5 min after stretch. In addition, MAPKs and p90rsk were maximally activated at 8 min and at 10–30 min after stretch, respectively. Next, the relationship between mechanical stress-induced hypertrophy and the cardiac renin-angiotensin system was investigated. When the stretch-conditioned culture medium was transferred to the culture dish of non-stretched cardiac myocytes, the medium activated MAPK activity slightly but significantly, and the activation was completely blocked by the type 1 angiotensin II receptor antagonist, CV-11974. However, activation of Raf-1 and MAPKs provoked by stretching cardiomyocytes was only partially suppressed by pretreatment with CV-11974. These results suggest that mechanical stress activates the protein kinase cascade of phosphorylation in cardiac myocytes in the order of Raf-1, MAPKK, MAPKs and p90rsk, and that angiotensin II, which is secreted from stretched myocytes, activates a part of these protein kinases.Abbreviations MAPK mitogen-activated protein kinase - MAPKK MAP kinase kinase - Raf-1 - Raf- 1 kinase p90rsk, 90 kDa ribosomal S6 kinase; AngII - angiotensin II - MAPKKK MAP kinase kinase kinase - rMAPK recombinant MAPKK fused to gluthathione S transferase - MMAKK recombinant MAPK fused to maltose binding protein - MBP myelin basic protein - ACE angiotensin-converting enzyme  相似文献   

8.
Mitogen-activated protein kinase cascade is evolutionarily conserved signal transduction module involved in transducing extracellular signals to the nucleus for appropriate cellular adjustment. This cascade consists essentially of three components, a MAPK kinase kinase (MAPKKK), a MAPK kinase (MAPKK) and a MAPK connected to each other by the event of phosphorylation. These kinases play various roles in intra- and extra-cellular signaling in plants by transferring the information from sensors to responses. Signaling through MAP kinase cascade can lead to cellular responses including cell division, differentiation as well as responses to various stresses. MAPK signaling has also been associated with hormonal responses. In plants, MAP kinases are represented by multigene families and are involved in efficient transmission of specific stimuli and also involved in the regulation of the antioxidant defense system in response to stress signaling. In the current review we summarize and investigate the participation of MAPKs as possible mediators of various abiotic stresses in plants.Key words: abiotic stress, cross talk, mitogen-activated protein kinases, heat map, MAPK signaling, signal transduction, stress signaling  相似文献   

9.
MAP kinase kinase (MAPKK) was purified 30,000-fold to homogeneity from extracts of rabbit skeletal muscle and shown to be a monomeric protein of apparent molecular mass 44 kDa. MAPKK activated the 42 kDa isoform of MAP kinase by phosphorylation of Thr-183 and Tyr-185, and phosphorylated itself slowly on tyrosine, threonine and serine residues, establishing that it is a 'dual specificity' protein kinase. Peptide sequences from MAPKK were homologous to other protein serine/threonine kinases, especially to the subfamily that includes yeast protein kinases that lie upstream of yeast MAP kinase homologues in the pheromone-dependent mating pathways.  相似文献   

10.
The 90 kDa ribosomal S6 kinase-2 (RSK2) is a growth factor-stimulated protein kinase with two kinase domains. The C-terminal kinase of RSK2 is activated by ERK-type MAP kinases, leading to autophosphorylation of RSK2 at Ser386 in a hydrophobic motif. The N-terminal kinase is activated by 3-phosphoinositide-dependent protein kinase-1 (PDK1) through phosphorylation of Ser227, and phosphorylates the substrates of RSK. Here, we identify Ser386 in the hydrophobic motif of RSK2 as a phosphorylation-dependent docking site and activator of PDK1. Treatment of cells with growth factor induced recruitment of PDK1 to the Ser386-phosphorylated hydrophobic motif and phosphorylation of RSK2 at Ser227. A RSK2-S386K mutant showed no interaction with PDK1 or phosphorylation at Ser227. Interaction with Ser386-phosphorylated RSK2 induced autophosphorylation of PDK1. Addition of a synthetic phosphoSer386 peptide (RSK2(373-396)) increased PDK1 activity 6-fold in vitro. Finally, mutants of RSK2 and MSK1, a RSK-related kinase, with increased affinity for PDK1, were constitutively active in vivo and phosphorylated histone H3. Our results suggest a novel regulatory mechanism based on phosphoserine-mediated recruitment of PDK1 to RSK2, leading to coordinated phosphorylation and activation of PDK1 and RSK2.  相似文献   

11.
The mitogen-activated protein kinase (MAPK) cascade, consisting of MAPK, MAPK kinase (MAPKK) and MAPK kinase kinase (MAPKKK), is the signaling system that relays various external signals, including mitogens and stresses in eukaryotes. MAPKK is activated by phosphorylation in the consensus motif, SXXXS/T, in animals, but the regulation mechanism for the plant MAPKK by phosphorylation, having the putative phosphorylation motif of S/TXXXXXS/T, is not yet fully clarified. Here we constructed a series of mutants of AtMEK1, an Arabidopsis MAPKK, having the sequence T218-X-S220-X-X-X-S224 that fits both of the plant- and animal-type motifs. We show that the two double-mutant proteins replacing Thr-218/Ser-224 and Ser-220/Ser-224 by Glu expressed in Escherichia coli show a constitutive activity to phosphorylate the Thr and Tyr residues of the kinase-negative mutant of an Arabidopsis MAPK, named ATMPK4, in vitro. The mutation analysis of AtMEK1 replacing Thr-218 and Ser-220 to Ala suggested that Thr-218 is autophosphorylated by the enzyme. The wild-type ATMPK4 was also phosphorylated by the active mutants of AtMEK1 and showed a high protein kinase activity toward myelin basic proteins. In contrast, ATMPK3, another Arabidopsis MAPK, was a poor substrate of this plant MAPKK, indicating that AtMEK1 has a substrate specificity preferring ATMPK4 to ATMPK3, at least in vitro. Furthermore, AtMEK1 immunoprecipitated from Arabidopsis seedlings stimulated with wounding, cold, drought, and high salt showed an elevated protein kinase activity toward the kinase-negative ATMPK4, while the amounts of the AtMEK1 protein did not change significantly. These data indicate that the AtMEK1 becomes an active form through phosphorylation and activates its downstream target ATMPK4 in stress response in Arabidopsis.  相似文献   

12.
Redox signaling and the MAP kinase pathways   总被引:19,自引:0,他引:19  
The mitogen-activated protein (MAP) kinases are a large family of proline-directed, serine/threonine kinases that require tyrosine and threonine phosphorylation of a TxY motif in the activation loop for activation through a phosphorylation cascade involving a MAPKKK, MAPKK and MAPK, often referred to as the MAP kinase module. Three separate such modules have been identified, based on the TxY motif of the MAP kinase and the dual-specificity kinases that strictly phosphorylate their specific TxY sequence. They are the extracellular signal regulated kinases (ERKs), c-jun N-terminal kinases (JNKs) and p38 MAPKs. The ERKs are mainly associated with proliferation and differentiation while the JNKs and p38MAP kinases regulate responses to cellular stresses. Redox homeostasis is critical for proper cellular function. While reactive oxygen species (ROS) and oxidative stress have been implicated in injury, a rapidly growing literature suggests that a transient increase in ROS levels is an important mediator of proliferation and results in activation of various signaling molecules and pathways, among which the MAP kinases. This review will summarize the role of ROS in MAP kinase activation in various systems, including in macrophages, cells of myeloid origin that play an essential role in inflammation and express a multi-component NADPH oxidase that catalyzes the receptor-regulated production of ROS.  相似文献   

13.
A novel protein kinase, which was only active when phosphorylated by the mitogen-activated protein kinase (MAP kinase), has been purified 85,000-fold to homogeneity from rabbit skeletal muscle. This MAP kinase activated protein kinase, termed MAPKAP kinase-2, was distinguished from S6 kinase-II (MAPKAP kinase-1) by its response to inhibitors, lack of phosphorylation of S6 peptides and amino acid sequence. MAPKAP kinase-2 phosphorylated glycogen synthase at Ser7 and the equivalent serine (*) in the peptide KKPLNRTLS*VASLPGLamide whose sequence is similar to the N terminus of glycogen synthase. MAPKAP kinase-2 was resolved into two monomeric species of apparent molecular mass 60 and 53 kDa that had similar specific activities and substrate specificities. Peptide sequences of the 60 and 53 kDa species were identical, indicating that they are either closely related isoforms or derived from the same gene. MAP kinase activated the 60 and 53 kDa forms of MAPKAP kinase-2 by phosphorylating the first threonine residue in the sequence VPQTPLHTSR. Furthermore, Mono Q chromatography of extracts from rat phaeochromocytoma and skeletal muscle demonstrated that two MAP kinase isoforms (p42mapk and p44mapk) were the only enzymes in these cells that were capable of reactivating MAPKAP kinase-2. These results indicate that MAP kinase activates at least two distinct protein kinases, suggesting that it represents a point at which the growth factor-stimulated protein kinase cascade bifurcates.  相似文献   

14.
Activation of mitogen-activated protein kinase (MAPK) in maturing mouse oocytes occurs after synthesis of Mos, a MAPKKK. To investigate whether Mos acts only through MEK1, we microinjected constitutively active forms of MEK1 (MEK1S218D/S222D referred herein as MEK*) and Raf (DeltaRaf) into mouse oocytes. In mos(-/-) oocytes, which do not activate MAPK during meiosis and do not arrest in metaphase II, MEK* and DeltaRaf did not rescue MAPK activation and metaphase II arrest, whereas Mos induced a complete rescue. MEK* and DeltaRaf induced cleavage arrest of two-cell blastomeres. They induced MAPK activation when protein phosphatases were inhibited by okadaic acid, suggesting that Mos may inhibit protein phosphatases. Finally, in mos(-/-) oocytes, MEK* induced the phosphorylation of Xp42(mapk)D324N, a mutant less sensitive to dephosphorylation, showing that a MAPK phosphatase activity is present in mouse oocytes. We demonstrate that active MAPKK or MAPKKK cannot substitute for Mos to activate MAPK in mouse oocytes. We also show that a phosphatase activity inactivates MAPK, and that Mos can overcome this inhibitory activity. Thus Mos activates MAPK through two opposite pathways: activation of MEK1 and inhibition of a phosphatase.  相似文献   

15.
Mechanisms of regulating the Raf kinase family   总被引:28,自引:0,他引:28  
The MAP Kinase pathway is a key signalling mechanism that regulates many cellular functions such as cell growth, transformation and apoptosis. One of the essential components of this pathway is the serine/threonine kinase, Raf. Raf (MAPKK kinase, MAPKKK) relays the extracellular signal from the receptor/Ras complex to a cascade of cytosolic kinases by phosphorylating and activating MAPK/ERK kinase (MEK; MAPK kinase, MAPKK) that phosphorylates and activates extracellular signal regulated kinase (ERK; mitogen-activated protein kinase, MAPK), which phosphorylates various cytoplasmic and nuclear proteins. Regulation of both Ras and Raf is crucial in the proper maintenance of cell growth as oncogenic mutations in these genes lead to high transforming activity. Ras is mutated in 30% of all human cancers and B-Raf is mutated in 60% of malignant melanomas. The mechanisms that regulate the small GTPase Ras as well as the downstream kinases MEK and extracellular signal regulated kinase (ERK) are well understood. However, the regulation of Raf is complex and involves the integration of other signalling pathways as well as intramolecular interactions, phosphorylation, dephosphorylation and protein-protein interactions. From studies using mammalian isoforms of Raf, as well as C. elegans lin45-Raf, common patterns and unique differences of regulation have emerged. This review will summarize recent findings on the regulation of Raf kinase.  相似文献   

16.
Autosomal dominant mutations in the human Leucine-Rich Repeat Kinase 2 ( LRRK2 ) gene represent the most common monogenetic cause of Parkinson disease (PD) and increased kinase activity observed in pathogenic mutants of LRRK2 is most likely causative for PD-associated neurotoxicity. The sequence of the LRRK2 kinase domain shows similarity to MAP kinase kinase kinases. Furthermore, LRRK2 shares highest sequence homology with mixed linage kinases which act upstream of canonical MAPKK and are involved in cellular stress responses. Therefore, we addressed the question if LRRK2 exhibits MAPKKK activity by systematically testing MAPKKs as candidate substrates, in vitro . We demonstrate that LRRK2 variants phosphorylate mitogen-activated protein kinase kinases (MAPKK), including MKK3 -4, -6 and -7. MKKs act upstream of the MAPK p38 and JNK mediating oxidative cell stress, neurotoxicity and apoptosis. The disease-associated LRRK2 G2019S and I2020T mutations show an increased phosphotransferase activity towards MKKs correlating with the activity shown for its autophosphorylation. Our findings present evidence of a new class of molecular targets for mutant LRRK2 that link to neurotoxicity, cellular stress, cytoskeletal dynamics and vesicular transport.  相似文献   

17.
This study characterizes the insulin-activated serine/threonine protein kinases in H4 hepatoma cells active on a 37-residue synthetic peptide (called the SKAIPS peptide) corresponding to a putative autoinhibitory domain in the carboxyl-terminal tail of the p70 S6 kinase as well as on recombinant p70 S6 kinase. Three peaks of insulin-stimulated protein kinase active on both these substrates are identified as two (possibly three) isoforms of the 40-45-kDa erk/microtubule-associated protein (MAP)-2 kinase family and a 150-kDa form of cdc2. Although distinguishable in their substrate specificity, these protein kinases together with the p54 MAP-2 kinase share a major common specificity determinant reflected in the SKAIPS peptide: the requirement for a proline residue immediately carboxyl-terminal to the site of Ser/Thr phosphorylation. In addition, however, at least one peak of insulin-stimulated protein kinase active on recombinant p70, but not on the SKAIPS peptide, is present although not yet identified. MFP/cdc2 phosphorylates both rat liver p70 S6 kinase and recombinant p70 S6 kinase exclusively at a set of Ser/Thr residues within the putative autoinhibitory (SKAIPS peptide) domain. erk/MAP kinase does not phosphorylate rat liver p70 S6 kinase, but readily phosphorylates recombinant p70 S6 kinase at sites both within and in addition to those encompassed by the SKAIPS peptide sequences. Although the tryptic 32P-peptides bearing the cdc2 and erk/MAP kinase phosphorylation sites co-migrate with a subset of the sites phosphorylated in situ in insulin-stimulated cells, phosphorylation of the p70 S6 kinase by these proline-directed protein kinases in vitro does not reproducibly activate p70 S6 kinase activity. Thus, one or more erk/MAP kinases and cdc2 are likely to participate in the insulin-induced phosphorylation of the p70 S6 kinase. In addition to these kinases, however, phosphorylation of the p70 S6 kinase by other as yet unidentified protein kinases is necessary to recapitulate the multisite phosphorylation required for activation of the p70 S6 kinase.  相似文献   

18.
The p38 mitogen-activated protein kinase (MAPK) signaling pathway plays an important role in cellular responses to inflammatory stimuli and environmental stress. Activation of p38 is mediated through phosphorylation by upstream MAPKK, which in turn is activated by MAPKKK. However, the mechanism of how different upstream MAP2Ks and MAP3Ks specifically contribute to p38 activation in response to different stimuli is still not clearly understood. By using double-stranded RNA-mediated interference (RNAi) in Drosophila cells, we demonstrate that D-MKK3 is a major MAP2K responsible for D-p38 activation by UV, heat shock, NaCl or peptiodglycan (PGN). Stimulation of UV and PGN activates D-p38 through D-MEKK1, heat shock-induced activation of D-p38 signals through both D-MEKK1 and D-ASK1. On the other hand, maximal activation of D-p38 by NaCl requires the expression of four MAP3Ks.  相似文献   

19.
H Kosako  Y Gotoh    E Nishida 《The EMBO journal》1994,13(9):2131-2138
MAP kinase kinase (MAPKK) has been identified as a protein factor that can induce phosphorylation and activation of inactive MAP kinase in vitro. In this study, we produced an anti-Xenopus MAPKK antibody that can specifically inhibit Xenopus MAPKK activity in vitro. Microinjection of this antibody into immature oocytes prevented progesterone-induced MAP kinase activation. Moreover, progesterone-induced histone H1 kinase activation and germinal vesicle breakdown (GVBD) were inhibited in the oocytes injected previously with this antibody. Furthermore, when a bacterially expressed Mos was introduced into immature oocytes, Mos-induced MAP kinase activation and GVBD were blocked in the oocytes injected with the anti-MAPKK antibody. These results show that MAPKK is responsible for the activation of MAP kinase in vivo and that the MAPKK/MAP kinase cascade plays a pivotal role in the MPF activation during the oocyte maturation process.  相似文献   

20.
Mitogen-activated protein kinases (MAPKs) are activated through cascades or modules consisting of a MAPK, a MAPK kinase (MAPKK), and a MAPKK kinase (MAPKKK). Investigating the molecular basis of activation of the c-Jun N-terminal kinase (JNK) subgroup of MAPK by the MAPKKK MEKK2, we found that strong and specific JNK1 activation by MEKK2 was mediated by the MAPKK JNK kinase 2 (JNKK2) rather than by JNKK1 through formation of a tripartite complex consisting of MEKK2, JNKK2, and JNK1. No scaffold protein was required for the MEKK2-JNKK2-JNK1 tripartite-complex formation. Expression of JNK1, JNKK2, and MEKK2 significantly augmented the coprecipitation of, respectively, MEKK2-JNKK2, MEKK2-JNK1, and JNKK2-JNK1, indicating that the interaction of MEKK2, JNKK2, and JNK1 is synergistic. Finally, the JNK1 was activated more efficiently in the MEKK2-JNKK2-JNK1 complex than was the JNK1 excluded from the complex. Thus, formation of a signaling complex through synergistic interaction of a MAPKKK, a MAPKK, and a MAPK molecule like MEKK2-JNKK2-JNK1 is likely to be responsible for the efficient, specific flow of information via MAPK cascades.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号