首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Location and numbers of neurons associated with sympathetic innervation of the heart within the right stellate and accessory cervical ganglia, the spinal cord, and spinal ganglia were investigated using horseradish peroxidase retrograde axonal transport techniques in cats. The enzyme was applied to central sections of the anastomosis of the stellate ganglion with the vagus nerve, the inferior cardiac nerve, and the vagosympathetic trunk caudal to the anastomosis. Labeled neurons within the stellate ganglion were located close to the point of departure of the nerves and more thinly distributed in the accessory cervical ganglion. A group of labeled cells was found in the anastomosis itself. Preganglionic neurons associated with sympathetic innervation of the heat were detected at segmental levels T1–T5 in the spinal cord. Labeled neurons were diffusely located in the spinal ganglia, concentrated mainly at levels T2–T4.Medical Institute, Ministry of Public Health of the RSFSR, Yaroslavl'. Translated from Neirofiziologiya, Vol. 21, No. 1, pp. 106–111, January–February, 1989.  相似文献   

2.
In the present experiments the effect of systemic capsaicin treatment on the retrograde labelling of sensory ganglion cells was studied following the injection of choleratoxin B subunit-horseradish peroxidase conjugate (CTX-HRP) into intact and chronically transected peripheral nerves. In the control rats CTX-HRP injected into intact sciatic nerves labelled medium and large neurons with a mean cross-sectional area of 1,041 +/- 39 gm2. However, after injection of the conjugate into chronically transected sciatic nerves of the control rats, many small cells were also labelled, shifting the mean cross-sectional area of the labelled cells to 632 +/- 118 microm2. Capsaicin pretreatment per se induced a moderate but significant decrease in the mean cross-sectional area of the labelled neurons (879 +/- 79 microm2). More importantly, systemic pretreatment with capsaicin prevented the peripheral nerve lesion-induced labelling of small cells. Thus, the mean cross-sectional areas of labelled neurons relating to the intact and transected sciatic nerves, respectively, did not differ significantly. These findings provide direct evidence for a phenotypic switch of capsaicin-sensitive nociceptive neurons after peripheral nerve injury, and suggest that lesion-induced morphological changes in the spinal cord may be related to specific alterations in the chemistry of C-fibre afferent neurons rather than to a sprouting response of A-fibre afferents.  相似文献   

3.
The plant lectin, IB4, binds to the surfaces of primary afferent neurons of the dorsal root and trigeminal ganglia and is documented to be selective for nociceptive neurons. Physiological data suggest that the intrinsic primary afferent neurons within the intestine are also nociceptors. In this study, we have compared IB4 binding to each of these neuron types in the guinea-pig. The only neurons in the intestine to be readily revealed by IB4 binding have Dogiel-type-II morphology; these neurons have been previously identified as intrinsic primary afferent neurons. Most of the neurons that are IB4-positive in the myenteric plexus are calbindin-immunoreactive, whereas those in the submucosal ganglia are immunoreactive for NeuN. The neurons that bind IB4 strongly have a similar appearance in enteric, dorsal root and trigeminal ganglia. Binding is to the cell surface, to the first part of axons and to cytoplasmic organelles. A low level of binding was found in the extracellular matrix. A few other neurons in all ganglia exhibit faint staining with IB4. Strongly reactive neurons are absent from the gastric corpus. Thus, IB4 binding reveals primary afferent neurons with similar morphologies, patterns of binding and physiological roles in enteric, dorsal root and trigeminal ganglia.This work was supported by a grant from the National Health and Medical Council of Australia.  相似文献   

4.
It has become clear that a number of neuropeptides are found in sensory nerves, some of which have been identified in visceral afferents. The best studied peptide is substance P, which has been localized in a population of capsaicin-sensitive visceral afferents. It has been established that there are a varied proportion of substance P-containing afferents in different visceral structures. In general, the peripheral termination of these nerves is around blood vessels. The central terminations of visceral afferents are in laminae I and V in the dorsal horn of the spinal cord. Substance P has been localized in these laminae and appears to be capsaicin-sensitive and therefore of sensory origin. Recently, substance K, which is derived from the same gene as substance P, has been found in visceral structures. Calcitonin gene-related peptide has been found in certain viscera to be contained in capsaicin-sensitive nerves. The contribution that other peptides make to visceral afferent innervation is not known.  相似文献   

5.
Kato S  Araki H  Kawauchi S  Takeuchi K 《Life sciences》2001,68(17):1951-1963
Body temperature dependency in gastric functional responses to baclofen, a GABA(B) agonist, such as acid secretion, mucosal blood flow (GMBF) and motor activity, was examined in urethane-anesthetized rats under normal (37+/-1 degrees C) and hypothermic (31+/-1 degrees C) conditions. A rat stomach was mounted in an ex-vivo chamber, perfused with saline, and the acid secretion was measured using a pH-stat method, simultaneously with GMBF by a laser Doppler flowmeter. Gastric motility was measured using a miniature balloon as intraluminal pressure recordings. Intravenous administration of baclofen significantly increased acid secretion at the doses > 0.3 mg/kg under hypothermic conditions, yet it caused a significant stimulation only at doses > 10 mg/kg under normothermic conditions. The increases in gastric motility and GMBF were similarly induced by baclofen, irrespective of whether the animals were subjected to normothermic or hypothermic conditions. These functional responses to baclofen under hypothermic conditions were totally attenuated by either bilateral vagotomy or atropine (3 mg/kg, s.c.). Baclofen at a lower dose (1 mg/kg i.v.) significantly increased the acid secretion even under normothermic conditions when the animals were subjected to chemical deafferenation of capsaicin-sensitive neurons or pretreatment with intracisternal injection of CGRP8-37 (30 ng/rat). These results suggest that 1) gastric effects of baclofen are dependent on body temperature in stimulating acid secretion but not GMBF or motor activity, 2) the acid stimulatory action of baclofen is enhanced under hypothermic conditions, and 3) the suppression of baclofen-induced acid response under normothermic conditions may be related to capsaicin-sensitive afferent neuronal activity, probably mediated by central release  相似文献   

6.
Using a refined patch clamp technique, a study was made of single calcium channels of spinal ganglia neurons on a cell-attached membrane site in newborn rats; these convey the basic (high threshold) component of calcium current. Findings show that currents carried by calcium ions at a concentration of 60 mM in the recording pipet changes from 0.58±0.05 to 0.43±0.05 pA with a change in potential of 20 mV. This corresponds to a channel conductance of 7±0.5 pS. The distribution of open time was monoexponential with a time constant of about 0.75 msec, independent of membrane potential. Distribution of closed time approached a biexponential time course. The fast component (0.8 msec) was voltage-dependent, while the slow component decreased from 22 to 4 msec when depolarization increased by 20 mV. Using experimentally obtained time parameters which describe single calcium channel function, and assuming a three-tier model of the channel, the numerical values of the constants of transition rates between individual states were determined.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 17, No. 5, pp. 673–682, September–October, 1985.  相似文献   

7.
8.
9.
10.
11.
Intracellular recording from the soma of 68 sensory neurons was performed during experiments on perfused cerebrospinal ganglia (CSG) isolated from 22- to 36-day-old rats. Application of vasopressin (VP) to the CSG produced a response in 59 cells (or 87.76%). Depolarization was noted in 67.8% of those responding, two-stage response in 16.95%, and hyperpolarization in 15.25%. All responses were dose-dependent and reversible. Membrane resistance (Rm) following depolarization declined but increased following hyperpolarization. Application of VP produced a lengthening of action potentials (AP) and a decline both in AP amplitude and after-hyperpolarization. A correlation was revealed between the biophysical properties of CSG neurons and the pattern of their response to VP. Neurons with a slow velocity of axonal conductance, protracted AP, and high Rm (small cells) had the lowest sensitivity threshold to VP at a concentration of 1·10–11 M and responded with prolonged high-amplitude depolarizing potentials. Cells with a high velocity of axonal conductance, short-lasting AP, and low Rm responded to VP at a concentration of 1·10–8 M, although response was occasionally lacking even at a concentration of 1·10–6 M. Depolarization was more short-lived in these neurons and characterized by lower amplitude; cases of hyperpolarization were sometimes observed. Findings from our study would indicate that VP exerts an effect on the soma or primary sensory neurons, acting preferentially on small CSG cells.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 20, No. 6, pp. 801–808, November–December, 1988.  相似文献   

12.
13.
14.
The effects of desensitization of capsaicin-sensitive afferent neurons on gastric microcirculation were investigated before and after administration of indomethacin at ulcerogenic dose in adrenalectomized rats with or without corticosterone replacement and in sham-operated animals. We estimated the blood flow velocity in submucosal microvessels; the diameters and permeability of mucosal venous microvessels as parameters of gastric microcirculation. Desensitization of capsaicin-sensitive neurons was performed with capsaicin at the dose 100 mg/kg two weeks before the experiment. Adrenalectomy was created one week before experiment. In vivo microscopy technique for the direct visualization of gastric microcirculation and the analysis of the blood flow was employed. Indomethacin at ulcerogenic dose decreased the blood flow velocity in submucosal microvessels, caused dilatation of superficial mucosal microvessels and increased their permeability. Desensitization of capsaicin-sensitive afferent neurons potentiated indomethacin-induced microvascular disturbances in gastric submucosa-mucosa. These potentiated effects of the desensitization are obviously promoted by concomitant glucocorticoid deficiency. Thus, glucocorticoid hormones have a beneficial effect on gastric microcirculation in rats with desensitization of capsaicin-sensitive afferent neurons.  相似文献   

15.
16.
Summary Dissociated chick embryo spinal ganglia neurons, cultivated without direct contact with glial cells maintain some enzymatic activities, for example: carboxylic esterases, succinic-dehydrogenase (SDH), glutamic-dehydrogenase (GDH), monoamine oxidase (MAO), lactico-dehydrogenase (LDH) and alcoholic-dehydrogenase (ADH) for several days periods.Nerve growth factor (NGF) prolongs the maintenance of the mitochondrial enzymes, carboxylic esterases, LDH and ADH in cultures of isolated neurons. Extract of embryonic spinal cord gives almost similar results as NGF.With the technical assistance of Miss E. Darcel.This work is part of the Doctorat ès-Sciences thesis.  相似文献   

17.
There is both morphological and functional evidence that capsaicin-sensitive sensory neurons innervate the digestive tract. The possible function of these neurons in gastric ulceration and gastrointestinal motility was investigated in rats which had been systemically pretreated with capsaicin (50-125 mg/kg). It was found that capsaicin-sensitive afferent neurons do not participate in the physiologic control of gastrointestinal propulsion. However, the inhibition of gastrointestinal transit due to surgical trauma or peritoneal irritation with iodine was reduced in capsaicin-treated rats. It was concluded that capsaicin-sensitive sensory neurons may be involved in sympathetic reflex inhibition of gastrointestinal propulsion. Gastric ulceration induced by the intraperitoneal injection of indomethacin or intragastric administration of ethanol was greatly aggravated in capsaicin-treated rats. Since an involvement of the autonomic nervous system as well as of histamine and prostaglandins in this effect of capsaicin treatment could be ruled out, further support was lent to the previously proposed hypothesis that sensory nerve endings can protect the gastric mucosa against ulceration by the local release of vasodilator substances.  相似文献   

18.
Using techniques of voltage-clamp in the whole-cell configuration and fast local superfusion, we studied the properties of transmembrane ion currents evoked in freshly isolated neurons of the spinal ganglia of rats by application of γ-aminobutyric acid, GABA, in different concentrations. Increases in the GABA concentration and application time resulted in modification of the amplitude and kinetic parameters of the currents. The dependence between the current amplitude and GABA concentration could be adequately described by the Hill equation. The current rise could be fitted by a sum of two exponential curves with different time constants; the time constant of the second exponent changed with an increase in the GABA concentration, while the first exponent was not sensitive to these changes. The current decay also should be fitted by two exponents. The time constant of the first exponent did not change with increases in the GABA concentration or duration of its application; at the same time the second exponent noticeably depended on the time of GABA application. Our experiments demonstrated that the density of GABA-activated ion channels in the membranes of the studied spinal ganglion cells is relatively high; this finding allows us to suppose possible involvement of these channels in regulation of the transmembrane conductivity in these cells.  相似文献   

19.
It was established in experiments on isolated rat spinal ganglia that the introduction of dopoamine (0.01–1.0 µM) into a superfusate potentiates the depolarizing responses of the neurons evoked by the action of serotonin, which is delivered from a micropipette under pressure, while the addition of serotonin in the same concentrations potentiates the depolarizing responses of the neurons evoked by the action of dopamine. The mutual potentiation of the effects of dopamine and serotonin depends on the concentration of the monoamines and is eliminated by blockers of the D1- (but not D2-dopamine) and type 2 serotonin (but not IA) receptors. The mutual potentiation of the effects of monoamines is of a postsynaptic nature and is associated with a change in the intracellular concentration of second messengers (Ca2+ and cAMP).A. M. Gor'kii Donetsk Medical Institute, Ministry of Health of the Ukrainian SSR. Translated from Neirofiziologiya, Vol. 23, No. 2, pp. 168–173, March–April, 1991.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号