首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dynamics of cold resistance and the activity of the photosynthetic apparatus (PSA) of wheat germs at 4°C were studied. It was shown that in the first hours of cold, a certain functional readjustment to the changed conditions takes place in the plant organism. A decrease in the activity of the PSA and cessation of the linear growth of the leaf are registered at this stage along with an increase in resistance, as well as an increase in the coefficient of non-photochemical quenching of the fluorescence of chlorophyll. In one to four days, when resistance reaches its maximum, photosynthesis and the rate of electron transport are stabilized, the chlorophyll content in the lightcollecting complex increases, and the growth recommences. The final stage of adaptation (days 4–7) is characterized not only by the steady level of resistance but also by new functional organization of the PSA, which allows the plants to endure the lowered temperature successfully.  相似文献   

2.
Low temperature is one of the important environmental changes that affect plant growth. The cold resistance capabilities of evergreen plants are the result of long-term adaptation to extreme environmental conditions. To investigate the responses of Ammopiptanthus nanus, a rare stress-tolerant evergreen plant, to extreme cold stress, we analyzed the proteome expression patterns of stressed plants; this is the first study to report these patterns for A. nanus. We collected adult A. nanus leaves under two conditions of cold stress: extreme cold (−29°C) and relatively less extreme cold (−5°C). Total crude proteins were extracted from leaf blades, separated by two-dimensional gel electrophoresis, and stained with Coomassie brilliant blue. Of the 500 protein spots detected in each of the samples, eight of the spots that exhibited clear changes under the different conditions were identified by MALDI-TOF analyses. Our results suggest that cold stress-related proteins may play diverse roles in the resistance to multiple environmental stresses.  相似文献   

3.
 研究了高温锻炼对低温胁迫下和低温锻炼对高温胁迫下葡萄(Vitis vinifera)叶片中丙二醛(MDA)、谷胱甘肽(GSH)和抗坏血酸(AsA)含量变化以及细胞中Ca2+分布的影响。结果表明: 高(低)温胁迫使正常生长的叶片丙二醛含量升高, GSH和AsA含量下降,低(高)温锻炼预处理能减少MDA含量,提高GSH和AsA含量,抑制了由于温度胁迫引起MDA含量升高和GSH和AsA下降趋势。常温下葡萄叶肉细胞的Ca2+主要分布于液泡、细胞间隙中;高温胁迫和低温胁迫后,细胞质中聚集大量Ca2+沉淀颗粒,液泡中和细胞间隙Ca2+沉淀颗粒减少,叶绿体超微结构被破坏,Ca2+稳态平衡遭到破坏。高温锻炼后细胞质出现大量的Ca2+沉淀颗粒,主要来源于细胞间隙,低温锻炼后细胞质也出现大量的Ca2+沉淀颗粒,主要来源于液泡,两者的叶绿体超微结构都完整;高温锻炼的叶片经过低温胁迫和低温锻炼的叶片经过高温胁迫后,细胞间隙和液泡内Ca2+沉淀颗粒增加,细胞质中Ca2+沉淀颗粒很少,叶绿体较完整,Ca2+稳态平衡得以维持。推测高低温锻炼能够通过Ca2+启动抗逆基因表达和维持细胞中Ca2+稳态平衡来交叉适应低高温的胁迫。  相似文献   

4.
研究植物群落功能性状间的相关关系及其对环境变化的响应,能够有效揭示植物功能性状的权衡模式及其对环境的适应策略。藏东昌都地区位于横断山脉西北部,复杂气候地貌孕育了丰富的植物资源,是青藏高原森林灌丛生态系统主要组分和国际生物多样性保护的热点地区。以藏东森林灌丛群落优势木本植物为研究对象,在大量野外调查基础上,采用相关分析、主成分分析、线性回归和方差分析等方法,研究了该区域植物功能性状间的相关关系、功能性状对环境变量的响应规律以及功能性状的变异来源。结果表明:(1)藏东木本植物表现出适应高寒环境的性状权衡模式,即:比叶面积、叶体积较小而叶干物质含量较大,叶磷含量和叶钾含量协同变化;(2)海拔和气候变量共同驱动着藏东木本植物功能性状的变化,并且藏东木本植物倾向于采取“高投入—慢回报”提高御寒能力的保守型适应策略;(3)海拔是影响藏东植物功能性状变异最显著的环境变量,种间变异在藏东植物群落功能性状随环境变化中起主要作用。研究结果揭示了藏东木本植物功能性状的权衡模式及其对高寒环境的适应策略,有助于加深对藏东自然植物资源分布规律和生态功能的认识,为区域生态系统功能和生物多样性保护提供科学依据。  相似文献   

5.
The changes of Ca2+ -ATPase activities of plasmolemma, and tonoplast membrane in roots and leaf chloroplasts in rice ( Oryza sativa L. ) seedlings were investigated for exploring the mechanism of cross adaptation to different stresses in the plants during the enhancement of chilling resistance induced by cold and salt pretreatment. The results indicated that the chilling resistance of rice seedlings was enhanced markedly by cold and salt pretreatment, but this enhancement was inhibited by Ca2+-chelate ethyleneglycol-bis-(β-aminoethyl ether) N, N-tetraacetic acid (EGTA) and the calmodulin inhibitor chlorpromazine (CPZ), it showed the calcium messenger system was involved in the course of chilling resistance formation. The Ca2+ -ATPase activity of root plasmolemma and tonoplast membrane as well as the Fe(CN)63- reduction in root plasmolemma in nonpretreated seedlings were declined markedly during the chilling stress. The Ca2+ -ATPase activities of plasmolemma, tonoplast membrane and chloroplasts as well as the Fe(CN)63- reduction of plasmolemma were enhanced by cold pretreatment. The activities of Ca2+ -ATPase and Fe(CN)63- reduction of plasmolemma, as compared with nonpretreated seedlings has increased by 86.80% and 93.93% respectively. The effect of salt pretreatmerit on the Ca2+ -ATPase activities of plasmolemma and chloroplast as well as Fe(CN)63- reduction of plasmolemma were similar to the effect of cold pretreatment. Although the Ca2+ -ATPase activity of tonoplast membrane was declined by salt pretreatment, the activity was none the less markedly higher than that of the nonpretreated seedlings. It showed that there was stronger ability of maintaining calcium homeostasis in the seedlings following two pretreatment. The results displayed that the enhancement of chilling resistance in rice seedlings with cold and salt pretreatment might be related to the effective activation of Ca2+ -ATPase in two pretreatment seedlings, because the activated Ca2+ -ATPase could bring back rapidly the raised cytoplasmic Ca2+ concentration from chilling stress to the state of calcium homeostasis, leading to the maintenance of normal functioning of the calcium messenger system and physiological metabolism. It seems that the adapated mechanism to chilling stress in two seedlings with cold and salt pretreatment was similar.  相似文献   

6.
Shoots and roots of wheat (Triticum aestivum L., cold-resistant species) and cucumber (Cucumis sativus L., cold-sensitive species) were chilled at 2°C or 10°C, respectively, for 7 h. The changes in cold, heat, and salt resistance in treated leaf and root cells were recorded. Local cooling of the leaf resulted in an increase of its cold and salt tolerance, but its heat tolerance remained unchanged. At the same time, cold tolerance of the root slightly increased as a result of local cooling, but its heat and salt tolerance decreased. Cooling of the shoot did not affect the cold and heat tolerance of root cells but caused a decrease in their salt tolerance. Finally, in the leaf maintained at a normal temperature, there was an increase in all kinds of stress resistance as a result of root cooling. We discuss the possibility of an unspecific change in stress resistance caused by metabolic shifts. These shifts are induced by a signal, which is transmitted inside the plant into plant organs located at a considerable distance from the chilled ones.  相似文献   

7.
The leaves of quaking aspen (Populus tremuloides Michx.) have a flattened petiole that allows them to quake (oscillate and roll) under low wind velocities. It was hypothesized that this adaptation might enable the plant to respond to windy conditions that would increase transpirational losses. No effects of wind with or without leaf quaking on stomatal resistance were observed under controlled conditions in the field. If wind and leaf quaking affect stomatal resistance, such effects must be small in comparison to those caused by other factors such as leaf water potential and ambient humidity.  相似文献   

8.
The dynamics of amidase, cysteine protease, and trypsin inhibitor activities were studied in the leaves of wheat (Triticum aestivum L.) seedlings grown under controlled conditions (25°C, illuminance 10 kLx, 14-h photoperiod) and subjected to cold hardening (5°C, 10 kLx, 14-h photoperiod). Changes in the activity of amidases and cysteine proteases proved to precede an increase in cold resistance during cold hardening and a decrease in cold resistance after the end of cold hardening. The activity of trypsin inhibitors changed only during cold hardening. It is suggested that amidases, cysteine proteases, and trypsin inhibitors are involved in the cold adaptation of plants.  相似文献   

9.
潮滩红树植物抗低温适应的生态学研究   总被引:21,自引:0,他引:21       下载免费PDF全文
采用电导法定量测定了中国东南沿海红树植物叶片的抗寒力变化。结果表明;(1)海南琼山东寨港主要红树种类冬季抗寒力(半致死温度)介于-2.3~-6.8℃之间,其中红树科植物抗寒力较强,多数种类属于低温敏感性相对较弱的L类型;海桑科和楝科红树种类抗寒力较弱,属于低温敏感性较强的H类型。(2)随纬度升高(个别地点除外),秋茄(Kandelia candel)、桐花树(Aegiceras corniculatum)和红海榄(Rhizophors,stylosa)抗寒力增强,呈现种群分化趋势。(3)同一地点,秋茄和桐花树抗寒力有明显季节变化:夏季最低,秋冬两季高于春季。(4)同一群落内,生长于中潮区滩面的秋茄抗寒力强于高潮区,但桐花树抗寒力在各个滩面相差木大。(5)秋茄和桐花树树冠上不同部位叶片的抗寒力不同,由表及里,由上至下,呈降低趋势。红树叶片抗寒力的种群分化、季节变化和部位差异是其趋异适应的结果,有益于红树植物的生存和繁育。  相似文献   

10.
In tobacco (Nicotiana tabacum L.) plants of hypersensitive cv. Samsun NN, a capability of necrosis lesion formation and protein patterns were studied after induction of antiviral resistance by defense responses activators (DRA) (arachidonic acid, ubiquinone 50, and vitamin E) and by infection with tobacco mosaic virus (TMV). DRA and TMV improved both local and systemic leaf resistance to TMV. Native protein electrophoresis demonstrated differences in the composition of leaf proteins extracted under acidic and alkaline conditions. SDS-PAGE revealed proteins accumulated during the development of systemic antiviral resistance after lower leaf treatments with DRA and of local resistance induced by pretreatment with TMV. It was shown that various DRA affected protein patterns similarly, whereas TMV infection resulted in other changes. It is supposed that different pathways function in tobacco plants during induction of systemic resistance by DRA and TMV infection.  相似文献   

11.
季子敬  全先奎  王传宽 《生态学报》2013,33(20):6967-6974
叶片易受环境因子影响,其形态解剖结构特征不但与叶片的生理功能密切相关,而且反映树木对环境变化的响应和适应。叶片结构的改变势必会改变树木的生理功能。同一树种长期生长在异质环境条件下,经过自然选择和适应,会在形态和生理特性等方面产生变异,形成特定的地理种群。另外,母体所经受的环境胁迫也会影响到其子代的生长、发育和生理等特征。因此,了解植物叶片形态结构对环境变化的响应与适应是探索植物对环境变化的响应适应机制的基础。兴安落叶松(Larix gmelinii Rupr.)是我国北方森林的优势树种,主要分布在我国东北地区,但日益加剧的气候变化可能会改变其现有的分布区。为了区分叶片对气候变化的可塑性和适应性,本研究采用同质园法比较测定了6个不同气候条件下的兴安落叶松种源的32年生树木的针叶解剖结构和光合生理相关因子,利用石蜡切片方法分析了针叶的解剖结构特征、光合能力(Pmax-a)、水分利用效率(WUE)之间的关系及其对气候变化的适应性。结果表明:表皮细胞厚度、叶肉细胞厚度、传输组织厚度、维管束厚度、内皮层厚度以及叶片总厚度均存在显著的种源间差异(P < 0.05)。叶肉细胞厚度与Pmax-a、气孔导度和WUE之间均存在显著的正相关关系(P < 0.05)。叶肉细胞厚度、表皮细胞厚度、叶片总厚度以及叶肉细胞厚度和表皮细胞厚度在叶片总厚度中所占比例均与种源地的干燥度指数(即年蒸发量与年降水量之比)呈正线性关系。这些结果说明:不同种源兴安落叶松针叶解剖结构因对种源原地气候条件的长期适应而产生显著的差异,从而引起其针叶光合作用、水分利用等生理功能发生相应的变化,从而有利于该树种在气候变化的情景下得以生存和繁衍。  相似文献   

12.
低温锻炼后桑树幼苗光合作用和抗氧化酶对冷胁迫的响应   总被引:12,自引:0,他引:12  
以桑树品种“秋雨”为试验材料,研究了桑树幼苗在低温锻炼、冷胁迫和常温恢复期间的光合作用和抗氧化酶活性的变化.结果表明: 12 ℃3 d低温锻炼明显提高了桑树幼苗的抗冷性.3 ℃3 d冷胁迫下,12 ℃3 d低温锻炼后的桑树幼苗叶片净光合速率(Pn)、气孔导度(Gs)和PSⅡ 最大光化学效率(Fv/Fm)明显高于对照(未经低温锻炼)处理的桑树幼苗,而且其在常温下的恢复也较对照桑树幼苗迅速.在12 ℃ 3 d低温锻炼和3 ℃ 3 d冷胁迫期间,桑树幼苗叶片脯氨酸和可溶性糖含量明显增加,而经低温锻炼的桑树幼苗叶片丙二醛(MDA)含量明显低于未经低温锻炼的桑树幼苗,经低温锻炼的桑树幼苗叶片抗坏血酸过氧化物酶(APX)活性则明显高于未经低温锻炼的桑树幼苗.说明渗透调节物质含量增加和APX活性提高在低温锻炼诱导桑树幼苗的抗冷性上发挥着重要的作用.  相似文献   

13.
Cornelius Lütz 《Protoplasma》2010,244(1-4):53-73
The life of plants growing in cold extreme environments has been well investigated in terms of morphological, anatomical, and ecophysiological adaptations. In contrast, long-term cellular or metabolic studies have been performed by only a few groups. Moreover, a number of single reports exist, which often represent just a glimpse of plant behavior. The review draws together the literature which has focused on tissue and cellular adaptations mainly to low temperatures and high light. Most studies have been done with European alpine plants; comparably well studied are only two phanerogams found in the coastal Antarctic. Plant adaptation in northern polar regions has always been of interest in terms of ecophysiology and plant propagation, but nowadays, this interest extends to the effects of global warming. More recently, metabolic and cellular investigations have included cold and UV resistance mechanisms. Low-temperature stress resistance in plants from cold environments reflects the climate conditions at the growth sites. It is now a matter of molecular analyses to find the induced genes and their products such as chaperones or dehydrins responsible for this resistance. Development of plants under snow or pollen tube growth at 0°C shows that cell biology is needed to explain the stability and function of the cytoskeleton. Many results in this field are based on laboratory studies, but several publications show that it is not difficult to study cellular mechanisms with the plants adapted to a natural stress. Studies on high light and UV loads may be split in two parts. Many reports describe natural UV as harmful for the plants, but these studies were mainly conducted by shielding off natural UV (as controls). Other experiments apply additional UV in the field and have had practically no negative impact on metabolism. The latter group is supported by the observations that green overwintering plants increase their flavonoids under snow even in the absence of UV. Thus, their defense and antioxidant role dominates. Ultrastructural comparisons were unable to find special light adaptations in plants taken from polar regions vs. high alpine species. The only adaptation found at the subcellular level for most alpine and polar plants are protrusions of the chloroplast envelopes. They are seen as a demand for fast membrane transport requiring additional membrane surface area, whereby the increase in stroma volume may help to support carbohydrate formation. Plants forming such protrusions have to cope with a short vegetation time. These observations are connected to the question as to how photosynthesis works quite well even at or under zero temperatures. The interplay between plastids, mitochondria, and peroxisomes, known as photorespiration, seems to be more intense than in lowland plants. This organelle cooperation serves as a valve for a surplus in solar energy input under cold conditions. Additional metabolic acclimations are under investigation, such as the role of an alternative plastid terminal oxidase. Plants from cold environments may also be seen as ideal objects for studying the combined effects of high light plus cold resistance—from the molecular level to the whole plant adaptation. Modern instrumentation makes it possible to perform vital metabolic measurements under outdoor conditions, and research stations in remote polar and alpine areas provide support for scientists in the preparation of samples for later cellular studies in the home laboratory.  相似文献   

14.
A comparison of structural-functional features of genomic DNAs allowed to estimate the role of internal and external factors in evolution of different groups of organisms. The basic difference between higher and lower organisms has been demonstrated. It is reflected in the difference of their reaction on to external factors in accordance with two adaptation types, the openness and autonomization. There is a correlation between structural-functional organization of genomic DNAs of higher and lower organisms and the above mentioned types of adaptation. DNA of lower organisms has been proposed to be characterized as "labile", and that of higher organisms, as "stable". The "DNA lability" means high mutation ability, which characterizes the existence of and evolution of lower organisms (genetic inconstancy of the lower organisms). On the contrary, "DNA stability" means the creation of stable genetic apparatus, reduction of variability in higher organisms (genetic constancy of higher organisms). This suggests the existence of the two principal ways of evolution.  相似文献   

15.
The cross circulation method has been used to study contribution of humoral and nonhumoral components to the origin of hypermetabolism (increased level of basal metabolism) and tachycardia under adaptation to cold and experimental hyperthyroidism. Consumption of oxygen, heart rate and rectal temperature have been studied in periods prior to and during the cross circulation. It is shown that under experimental hyperthyroidism contribution of humoral and nonhumoral factors to the origin of hypermetabolism equals 22 and 78%, while that to genesis of tachycardia--44 and 56%, respectively. Under cold adaptation an increase of the basal metabolism level depends on humoral agents by 77% and on changes of the stationary character only by 23%. The nature of adaptation tachycardia is mainly, of the humoral origin (65%).  相似文献   

16.
Microarrays have been used to examine changes in gene expression underlying responses to selection for increased stress resistance in Drosophila melanogaster, but changes in expression patterns associated with increased resistance to cold stress have not been previously reported. Here we describe such changes in basal expression levels in replicate lines following selection for increased resistance to chill coma stress. We found significant up- or down-regulation of expression in 94 genes on the Affymetrix Genome 2.0 array. Quantitative RT-PCR was used to confirm changes in expression of six genes. Some of the identified genes had previously been associated with stress resistance but no previously identified candidate genes for cold resistance showed altered patterns of expression. Seven differentially expressed genes that form a tight chromosomal cluster and an unlinked gene AnnX may be potentially important for cold adaptation in natural populations. Artificial selection for chill coma resistance therefore altered basal patterns of gene expression, but we failed to link these changes to plastic changes in expression under cold stress or to previously identified candidate genes for components of cold resistance.  相似文献   

17.
The effect of long-term clinorotation on potato minituber formation and the structural-functional organization of storage parenchyma cell in minitubers has been studied by using methods of organ culture in vitro, light- and electron microscopy, biochemistry as well as phenological observation. It was established some acceleration of growth, changes in the parenchyma cell ultrastructure and in the starch content as well as an intensification of phosphorylase activity in the storage tissue of minitubers under the influence of simulated microgravity.  相似文献   

18.
The effect of exposure to freezing temperature (?15°C) on leaf phospholipid composition of hardened rye (Secale cereale L.) and hardened wheat cultivars (‘Miranovskaja 808’, ‘Bezostaja 1’, ‘Short Mexican’ and ‘Penjamo 62’), which differ in their resistance to frost, was investigated. Hardening took place under natural conditions. All the seedlings attained an equal level of linolenic acid in their leaves during hardening. Exposure to freezing temperatures resulted in a loss of phosphatidyl choline and accumulation of phosphatidic acid in the leaves. The ratio of phosphatidic acid to phosphatidyl choline, but not the level of poly-unsaturated fatty acids in the leaves, was related to their ability to survive at low temperatures. As freezing injury is caused by the formation of ice crystals in both extra- and intracellular space, it is probable that the plasma membranes of the investigated cultivars differed with respect to their water permeability. It is concluded that the plants, depending on the degree of their resistance to cold, produce an unknown substance of lipidic nature upon exposure to cold, with the aid of which they adjust the transitional state of their membranes to the prevailing temperature and, at the same time, facilitate the efflux of water from the cells.  相似文献   

19.
Resistance to pink snow mould, caused by Microdochium nivale, was investigated in four resistant winter wheat lines from the USDA World Cereal Collection (CI9342, CI14106, PI173440 and PI181268) and three Nordic wheat lines (Bjørke, Rida and V1004). Pink snow mould resistance was tested in non‐hardened and cold‐hardened plants incubated under artificial snow cover and in detached leaf segments mounted on water agar and incubated at either 3°C in darkness or at room temperature with light during the day. The wheat lines CI9342, CI14106 and PI181268 were more resistant than the Nordic lines, both before and after cold hardening. Thus, although cold hardening strongly increases the level of snow mould resistance in all the wheat lines, some resistance mechanisms are also present prior to cold hardening in some of the resistant lines. CI9342, CI14106 and PI181268 also had a higher level of resistance than the other lines in the detached leaf assay, indicating that these lines have some resistance mechanisms acting in the leaves. The resistance of PI173440 was expressed only in intact hardened plants and not in non‐hardened plants or in detached leaves. This indicates that this line relies on cold hardening‐related changes in the crown for its resistance. In the detached leaf assay the rate of lesion development varied greatly between leaves of different order. The highest correlation with the whole plant test was obtained when using secondary leaves and incubation at 3°C in the dark.  相似文献   

20.
The present work comprises a study of 6 wheat varieties of various degrees of cold resistance. They are: 2 winter varieties, Nungta 183 and Huapei 187; 2 spring varieties, Nanta 2419 and Piyü; and 2 intermediate varieties (according to their winter hardiness), Pima No. 1 and Pingyüan 50. All these varieties were cultivated under the same natural conditions. Cytological changes of each of the varieties were studied comparatively at different stages of the overwintering period. In addition, certain morphological and physiological features of the above mentioned varieties were also studied. With the temperature gradually falling in autumn, the rate of the cell divisions and the physiological activities of the nucleoli of the winter varieties decreased, the growth of the plants and the development of the apical cones were suppressed, and so more storage materials were left. The less hardy and non-hardy varieties, on the other hand, retained their cytophysiological activities and high growing rate, so that the stored materials were much less than those left in the winter varieties. However the non-resistant varieties could not withstand the winter frost and survived no more. The plants of the less hardy varieties were partly killed by winter frost. When the temperature dropped further in winter, plasmolysis gradually appeared in the cells of the tillering nodes of the cold resistant wheat plants, and it disappeared with the return of the warmer weather. The degrees of the plasmolysis in different varieties were found proportional to their cold hardiness, and no plasrnolysis was observed in the spring wheat. Thus a correlation apparently exists between the plasmolysis and the cold resistance in wheat. In winter, the vacuoles of the young leaf cells and of the cells of the primary meristematic tissues of the apical cones became smaller and smaller, while a dense reticular structure appeared in the cytoplasm. In spring, the vacuoles restored, and the reticular structure disappeared. It seems that the occurrence of the reticular structure in the winter season is also closely correlated with the cold resistance of the wheat plants. It was found that the nuclei and the chloroplasts of the winter varieties were more resistant to cold than those of the less resistant and non-resistant varieties. The stability of these structures increased in hardened condition. Morphological changes of the chloroplasts of the young leaf cells occured from autumn to winter, they were transformed from polymorphic to uniformly globular. The chloroplasts of some cells were balling together, however, they actually retained their individualities. The chondriosomes increased in size and quantity during the hardened period. They became short and thick, some were in globular form or they clumped together in severe winter, and gradually restored when warmer weather arrived in the spring. The correlations of the mitosis, the plasmolysis, the appearance of the reticular structure in the cytoplasm and the stability of the nuclei with the cold resistance of the wheat were discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号