首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experimental analysis and manipulation of protein–DNA interactions pose unique biophysical challenges arising from the structural and chemical homogeneity of DNA polymers. We report the use of yeast surface display for analytical and selection-based applications for the interaction between a LAGLIDADG homing endonuclease and its DNA target. Quantitative flow cytometry using oligonucleotide substrates facilitated a complete profiling of specificity, both for DNA-binding and catalysis, with single base pair resolution. These analyses revealed a comprehensive segregation of binding specificity and affinity to one half of the pseudo-dimeric interaction, while the entire interface contributed specificity at the level of catalysis. A single round of targeted mutagenesis with tandem affinity and catalytic selection steps provided mechanistic insights to the origins of binding and catalytic specificity. These methods represent a dynamic new approach for interrogating specificity in protein–DNA interactions.  相似文献   

2.
Protein microarrays represent an important new tool in proteomic systems biology. This review focuses on the contributions of protein microarrays to the discovery of novel disease biomarkers through antibody-based assays. Of particular interest is the use of protein microarrays for immune response profiling, through which a disease-specific antibody repertoire may be defined. The antigens and antibodies revealed by these studies are useful for clinical assay development, with enormous potential to aid in diagnosis, prognosis, disease staging and treatment selection. The discovery and characterization of novel biomarkers specifically tailored to disease type and stage are expected to enable personalized medicine by facilitating preventative medicine, predictive diagnostics and individualized curative therapies.  相似文献   

3.
Protein microarrays represent an important new tool in proteomic systems biology. This review focuses on the contributions of protein microarrays to the discovery of novel disease biomarkers through antibody-based assays. Of particular interest is the use of protein microarrays for immune response profiling, through which a disease-specific antibody repertoire may be defined. The antigens and antibodies revealed by these studies are useful for clinical assay development, with enormous potential to aid in diagnosis, prognosis, disease staging and treatment selection. The discovery and characterization of novel biomarkers specifically tailored to disease type and stage are expected to enable personalized medicine by facilitating preventative medicine, predictive diagnostics and individualized curative therapies.  相似文献   

4.
Proteomic studies require efficient, robust, and practical methods of characterizing proteins present in biological samples. Here we describe an integrated strategy for systematic proteome analysis based on differential guanidination of C-terminal lysine residues on tryptic peptides followed by capillary liquid chromatography-electrospray tandem mass spectrometry. The approach, termed mass-coded abundance tagging (MCAT), facilitates the automated, large-scale, and comprehensive de novo determination of peptide sequence and relative quantitation of proteins in biological samples in a single analysis. MCAT offers marked advantages as compared with previously described methods and is simple, economic, and effective when applied to complex proteomic mixtures. MCAT is used to identify proteins, including polymorphic variants, from complex mixtures and measure variation in protein levels from diverse cell types.  相似文献   

5.
Urinary proteome profiling using microfluidic technology on a chip   总被引:1,自引:0,他引:1  
Clinical diagnostics and biomarker discovery are the major focuses of current clinical proteomics. In the present study, we applied microfluidic technology on a chip for proteome profiling of human urine from 31 normal healthy individuals (15 males and 16 females), 6 patients with diabetic nephropathy (DN), and 4 patients with IgA nephropathy (IgAN). Using only 4 microL of untreated urine, automated separation of proteins/peptides was achieved, and 1-7 (3.8 +/- 0.3) spectra/bands of urinary proteins/peptides were observed in the normal urine, whereas 8-16 (11.3 +/- 1.2) and 9-14 (10.8 +/- 1.2) spectra were observed in urine samples of DN and IgAN, respectively. Coefficient of variations of amplitudes of lower marker (1.2 kDa), system spectra (6-8 kDa), and upper marker (260.0 kDa) were 22.84, 24.92, and 32.65%, respectively. ANOVA with Tukey post-hoc multiple comparisons revealed 9 spectra of which amplitudes significantly differed between normal and DN urine (DN/normal amplitude ratios ranged from 2.9 to 3102.7). Moreover, the results also showed that 3 spectra (with molecular masses of 12-15, 27-28, and 34-35 kDa) were significantly different between DN and IgAN urine (DN/IgAN amplitude ratios ranged from 3.9 to 7.4). In addition to the spectral amplitudes, frequencies of some spectra could differentiate the normal from the diseased urine but could not distinguish between DN and IgAN. There was no significant difference, regarding the spectral amplitude or frequency, observed between males and females. These data indicate that the microfluidic chip technology is applicable for urinary proteome profiling with potential uses in clinical diagnostics and biomarker discovery.  相似文献   

6.
Little about the reliability of measurements obtained using synthetic peptide microarrays is known. We report results from a study on the quantitative reliability of microarrays manufactured by robot-supported immobilization of presynthesized peptides for different microarray platforms. Technological precision is assessed for inter- and intra-device readout comparisons. Correlations between measured signals and known dissociation constants using a phenomenological model derived from the mass action law are discussed. Special emphasis is on discussing the pitfalls of high-throughput affinity measurements. We show that the quantitative determination of binding affinities is prone to be biased toward a mean affinity of around 10(-7)M, while the classification of peptides into either "binders" or "nonbinders" provides very high prediction accuracy. The experimental requirements needed to obtain reliable binding affinity predictions are discussed.  相似文献   

7.
The recent characterization of an acetylcholine binding protein (AChBP) from the fresh water snail, Lymnaea stagnalis, shows it to be a structural homolog of the extracellular domain of the nicotinic acetylcholine receptor (nAChR). To ascertain whether the AChBP exhibits the recognition properties and functional states of the nAChR, we have expressed the protein in milligram quantities from a synthetic cDNA transfected into human embryonic kidney (HEK) cells. The protein secreted into the medium shows a pentameric rosette structure with ligand stoichiometry approximating five sites per pentamer. Surprisingly, binding of acetylcholine, selective agonists, and antagonists ranging from small alkaloids to larger peptides results in substantial quenching of the intrinsic tryptophan fluorescence. Using stopped-flow techniques, we demonstrate rapid rates of association and dissociation of agonists and slow rates for the alpha-neurotoxins. Since agonist binding occurs in millisecond time frames, and the alpha-neurotoxins may induce a distinct conformational state for the AChBP-toxin complex, the snail protein shows many of the properties expected for receptor recognition of interacting ligands. Thus, the marked tryptophan quenching not only documents the importance of aromatic residues in ligand recognition, but establishes that the AChBP will be a useful functional as well as structural surrogate of the nicotinic receptor.  相似文献   

8.
Serological proteins of neuroblastoma were profiled and analyzed by ProteinChip-SELDI-TOF MS technology with five types of protein chips. By comparing with normal control, a number of protein or polypeptide signals were found significantly and consistently different in their intensities (expression levels) in tumor sera. Interestingly, nine polypeptide peaks in these proteomic features can be simultaneously detected with consistent variations by more than one type of protein chips. None of the expression differences of these nine polypeptides was found in similar comparisons between healthy controls and hepatomas. Preliminary protein identification showed hints for that some of these proteomic alterations may be closely related to the tumorigenesis of neuroblastoma. These results demonstrated the potential of serological biomarker identification for neuroblastoma by ProteinChip-SELDI technology.  相似文献   

9.
High-resolution profiling of histone methylations in the human genome   总被引:75,自引:0,他引:75  
Barski A  Cuddapah S  Cui K  Roh TY  Schones DE  Wang Z  Wei G  Chepelev I  Zhao K 《Cell》2007,129(4):823-837
Histone modifications are implicated in influencing gene expression. We have generated high-resolution maps for the genome-wide distribution of 20 histone lysine and arginine methylations as well as histone variant H2A.Z, RNA polymerase II, and the insulator binding protein CTCF across the human genome using the Solexa 1G sequencing technology. Typical patterns of histone methylations exhibited at promoters, insulators, enhancers, and transcribed regions are identified. The monomethylations of H3K27, H3K9, H4K20, H3K79, and H2BK5 are all linked to gene activation, whereas trimethylations of H3K27, H3K9, and H3K79 are linked to repression. H2A.Z associates with functional regulatory elements, and CTCF marks boundaries of histone methylation domains. Chromosome banding patterns are correlated with unique patterns of histone modifications. Chromosome breakpoints detected in T cell cancers frequently reside in chromatin regions associated with H3K4 methylations. Our data provide new insights into the function of histone methylation and chromatin organization in genome function.  相似文献   

10.
11.
The nicotinic acetylcholine receptor regulates the ion permeability of the postsynaptic membrane. This report presents evidence that the transmitter binding site and the ion channel may be located on distinct subunits. By hybridisation of receptor complexes, in which the transmitter binding site was blocked with complexes in which the ion channel was irreversibly inhibited, we reconstituted active acetylcholine receptor complexes. The reconstituted system was similar to the native receptor in its ability to regulate the ion permeability of lipid vesicles in response to nicotinic cholinergic effectors.  相似文献   

12.
Protein phosphorylation is one of the main process in the signal transduction pathway. In recent years, there has been increasing attention to plant phosphorylation signaling and many laboratories are trying to elucidate pathways using various approaches. Although more than 1000 protein kinase (PK) genes have been annotated in the Arabidopsis genome, biochemical characterization of those PKs is limited. In this work, we demonstrate high-throughput profiling of serine/threonine autophosphorylation activity by a combination of the 759N-terminal biotinylated proteins library, produced using a wheat germ cell-free protein production system, and a commercially available luminescence system. Luminescent analysis revealed that 179 of the 759 PKs had autophosphorylation activity. From these 179 PKs, 67 of the most active PKs were analyzed to determine their function using the PlantP database. This analysis revealed that 35 (53%) of the proteins were classified as non-transmembrane protein kinases, and 15 (23%) were receptor-like protein kinases. Additionally, PKs from Group 4.4-MAP3K, Group 1.6, Group 4.5-MAPK/CDC/CK2/GSK kinases and Group 1.10-receptor like cytoplasmic kinases contained the highest percentage of autophosphorylated activity. Next, to get a better overview of the annotated 67 PKs, we used the gene ontology annotation search on the TAIR website to classify the 67 PKs into functional category. As a result, some of these PKs may be involved in phospho-signaling pathways such as signal transduction, stress response, and the regulation of cell division. Information from this study may shed light on many unknown plant PKs. This study will be a basis for understanding the function of PKs in phosphorylation network for future research.  相似文献   

13.
Protein domains are conserved and functionally independent structures that play an important role in interactions among related proteins. Domain-domain interactions have been recently used to predict protein-protein interactions (PPI). In general, the interaction probability of a pair of domains is scored using a trained scoring function. Satisfying a threshold, the protein pairs carrying those domains are regarded as "interacting". In this study, the signature contents of proteins were utilized to predict PPI pairs in Saccharomyces cerevisiae, Caenorhabditis elegans, and Homo sapiens. Similarity between protein signature patterns was scored and PPI predictions were drawn based on the binary similarity scoring function. Results show that the true positive rate of prediction by the proposed approach is approximately 32% higher than that using the maximum likelihood estimation method when compared with a test set, resulting in 22% increase in the area under the receiver operating characteristic (ROC) curve. When proteins containing one or two signatures were removed, the sensitivity of the predicted PPI pairs increased significantly. The predicted PPI pairs are on average 11 times more likely to interact than the random selection at a confidence level of 0.95, and on average 4 times better than those predicted by either phylogenetic profiling or gene expression profiling.  相似文献   

14.
Homology models of nicotinic acetylcholine receptors (nAChRs) suggest that subtype specificity is due to non-conserved residues in the complementary subunit of the ligand-binding pocket. Cytisine and its derivatives generally show a strong preference for heteromeric α4β21 nAChRs over the homomeric α7 subtype, and the structural modifications studied do not cause large changes in their nAChR subtype selectivity. In the present work we docked cytisine, N-methylcytisine, and several pyridone ring-substituted cytisinoids into the crystallographic structure of the Lymnaea stagnalis acetylcholine binding protein (AChBP) co-crystallized with nicotine (1UW6). The graphical analysis of the best poses showed that cytisinoids have weak interactions with the side chains of the non-conserved amino acids in the complementary subunit justifying the use of PDB 1UWB as a surrogate for nAChR. Furthermore, we found a high correlation (R2 = 0.96) between the experimental pIC50 values at α4β21 nAChR and docking energy (S) of the best cytisinoid poses within the AChBP. Due to the quality of the correlation we suggest that this equation might be used as a predictive model to propose new cytisine-derived nAChRs ligands. Our docking results also suggest that further structural modifications of these cytisinoids will not greatly alter their α4β21/α7 selectivity.  相似文献   

15.
Usui-Aoki K  Shimada K  Nagano M  Kawai M  Koga H 《Proteomics》2005,5(9):2396-2401
We have previously described our systems for the high-throughput production of antibodies against mouse KIAA proteins and their validation (Proteomics 2004, 4, 1412-1416). Using our "libraries" of antibodies, we established a novel antibody microarray system in which surface plasmon resonance (SPR) technology is utilized for signal detection. Up to 400 real-time antibody-target bindings could be measured simultaneously within a single hour. This rapid detection was achieved by direct readout of the bindings using SPR technology. To evaluate our system, we assessed the reproducibility on crude protein samples and obtained satisfactorily reproducible results, exhibiting correlation values >0.92. Using this SPR-based antibody microarray system, we examined mKIAA protein expression in five different adult mouse tissues and identified the specific tissue expression patterns of several mKIAA proteins.  相似文献   

16.
The ard gene of Drosophila melanogaster encodes a structural homologue of vertebrate nicotinic acetylcholine receptors (AChR) and is expressed exclusively in nervous tissue. To study the nature of the ARD protein, antibodies were raised against fusion constructs containing two regions of this polypeptide. One segment is putatively extracellular (amino acids 65-212), the other domain is exposed to the cytoplasm (amino acids 305-444). The ARD antisera obtained served to investigate the physical relationship between the ARD protein and alpha-bungarotoxin (alpha-Btx) binding sites occurring in Drosophila. Two different high-affinity binding sites for [125I]alpha-Btx, a highly potent antagonist of vertebrate muscle AChR, were detected in fly head membranes. Equilibrium binding and kinetic studies revealed Kd values of approximately 0.1 nM (site 1) and approximately 4 nM (site 2). The estimated maximal binding (Bmax) was approximately 240 and 1080 fmol/mg protein respectively. Both sites exhibited a nicotinic-cholinergic pharmacology. Immunoprecipitation experiments with the ARD antisera indicated that the ARD protein is associated with the [125I]alpha-Btx binding site 1 only. These data support the previously postulated hypothesis that the ARD protein is part of an alpha-Btx binding neuronal AChR of Drosophila. Furthermore, they indicate heterogeneity in nicotinic-cholinergic binding sites in the insect nervous system.  相似文献   

17.
Dittmann K  Riese U  Hamburger M 《Phytochemistry》2004,65(21):2885-2891
An assay for the HPLC-based search for monoamine oxidase-A (MAO-A) inhibitors in plant extracts was established. It combines human recombinant MAO-A, expressed as GST-fusion protein in yeast, with a kinetic measurement of the conversion of kynuramine to 4-hydroxyquinoline. Substrate selectivity and kinetic parameters of the GST-fusion protein were comparable to the wild-type enzyme. The applicability of the assay to HPLC-based activity profiling was tested with plant extracts spiked with small amounts of known MAO inhibitors.  相似文献   

18.
The objective of this study was to determine if liquid chromatography mass spectrometry (LC/MS) data of tryptic digests of proteins can be used for quantitation. In theory, the peak area of peptides should correlate to their concentration; hence, the peak areas of peptides from one protein should correlate to the concentration of that particular protein. To evaluate this hypothesis, different amounts of tryptic digests of myoglobin were analyzed by LC/MS in a wide range between 10 fmol and 100 pmol. The results show that the peak areas from liquid chromatography mass spectrometry correlate linearly to the concentration of the protein (r2 = 0.991). The method was further evaluated by adding two different concentrations of horse myoglobin to human serum. The results confirm that the quantitation method can also be used for quantitative profiling of proteins in complex mixtures such as human sera. Expected and calculated protein ratios differ by no more than 16%. We describe a new method combining protein identification with accurate profiling of individual proteins. This approach should provide a widely applicable means to compare global protein expression in biological samples.  相似文献   

19.
The human KLK14 gene is one of the newly identified serine protease genes belonging to the human kallikrein family, which contains 15 members. KLK14 , like all other members of the human kallikrein family, is predicted to encode for a secreted serine protease already found in various biological fluids. This new kallikrein is mainly expressed in prostate and endocrine tissues, but its function is still unknown. Recent studies have demonstrated that KLK14 gene expression is up-regulated in prostate and breast cancer tissues, and that higher expression levels correlate with more aggressive tumors. In this work, we used phage-display substrate technology to study the substrate specificity of hK14. A phage-displayed random pentapeptide library with exhaustive diversity was screened with purified recombinant hK14. Highly specific and sensitive substrates were selected from the library. We show that hK14 has dual activity, trypsin- and chymotrypsin-like, with a preference for cleavage after arginine residues. A SwissProt database search with selected sequences identified six potential human protein substrates for hK14. Two of them, laminin alpha-5 and collagen IV, which are major components of the extracellular matrix, have been demonstrated to be hydrolyzed efficiently by hK14.  相似文献   

20.
A novel and efficient method has been developed for isolation of correctly digested DNA fragments without the use of classic size-dependent electrophoretic separation methods. To achieve this, DNA fragments are end-labelled by haptens. After specific endonuclease digestion of the hapten-labelled DNA, the DNA is incubated with a protein that specifically binds to the hapten. The incubation mixture is then passed through a cartridge containing a protein-binding membrane that does not bind DNA. Undigested and partly digested DNA are retained on the membrane, while correctly digested DNA is selectively recovered for use in further downstream applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号