首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Gametophytic self-incompatibility (GSI) in the grasses is controlled by a distinct two-locus genetic system governed by the multiallelic loci S and Z. We have employed diploid Hordeum bulbosum as a model species for identifying the self-incompatibility (SI) genes and for elucidating the molecular mechanisms of the two-locus SI system in the grasses. In this study, we attempted to identify S haplotype-specific cDNAs expressed in pistils and anthers at the flowering stage in H. bulbosum, using the AFLP-based mRNA fingerprinting (AMF, also called cDNA-AFLP) technique. We used the AMF-derived DNA clones as markers for fine mapping of the S locus, and found that the locus resided in a chromosomal region displaying remarkable suppression of recombination, encompassing a large physical region. Furthermore, we identified three AMF-derived markers displaying complete linkage to the S locus, although they showed no significant homology with genes of known functions. Two of these markers showed expression patterns that were specific to the reproductive organs (pistil or anther), suggesting that they could be potential candidates for the S gene.  相似文献   

2.
How far are we from unravelling self-incompatibility in grasses?   总被引:1,自引:0,他引:1  
The genetic and physiological mechanisms involved in limiting self-fertilization in angiosperms, referred to as self-incompatibility (SI), have significant effects on population structure and have potential diversification and evolutionary consequences. Up to now, details of the underlying genetic control and physiological basis of SI have been elucidated in two different gametophytic SI (GSI) systems, the S-RNase SI and the Papaver SI systems, and the sporophytic SI (SSI) system (Brassica). In the grass family (Poaceae), which contains all the cereal and major forage crops, SI has been known for half a century to be controlled gametophytically by two multiallelic and independent loci, S and Z. But still none of the gene products for S and Z is known and only limited information on related biochemical responses is available. Here we compare current knowledge of grass SI with that of other well-characterized SI systems and speculate about the relationship between SSI and grass SI. Additionally, we discuss comparative mapping as a tool for the further investigation of grass SI.  相似文献   

3.
Tran QK  Leonard J  Black DJ  Persechini A 《Biochemistry》2008,47(28):7557-7566
We have investigated the effects of phosphorylation at Ser-617 and Ser-635 within an autoinhibitory domain (residues 595-639) in bovine endothelial nitric oxide synthase on enzyme activity and the Ca (2+) dependencies for calmodulin binding and enzyme activation. A phosphomimetic S617D substitution doubles the maximum calmodulin-dependent enzyme activity and decreases the EC 50(Ca (2+)) values for calmodulin binding and enzyme activation from the wild-type values of 180 +/- 2 and 397 +/- 23 nM to values of 109 +/- 2 and 258 +/- 11 nM, respectively. Deletion of the autoinhibitory domain also doubles the maximum calmodulin-dependent enzyme activity and decreases the EC 50(Ca (2+)) values for calmodulin binding and calmodulin-dependent enzyme activation to 65 +/- 4 and 118 +/- 4 nM, respectively. An S635D substitution has little or no effect on enzyme activity or EC 50(Ca (2+)) values, either alone or when combined with the S617D substitution. These results suggest that phosphorylation at Ser-617 partially reverses suppression by the autoinhibitory domain. Associated effects on the EC 50(Ca (2+)) values and maximum calmodulin-dependent enzyme activity are predicted to contribute equally to phosphorylation-dependent enhancement of NO production during a typical agonist-evoked Ca (2+) transient, while the reduction in EC 50(Ca (2+)) values is predicted to be the major contributor to enhancement at resting free Ca (2+) concentrations.  相似文献   

4.
5.
6.
7.
We have investigated whether specific protein phosphorylation events are induced in Papaver rhoeas pollen as a consequence of the self-incompatibility (SI) response. Pollen grown in vitro in the presence of 32P-orthophosphate was challenged with biologically active recombinant S proteins, and pollen proteins were extracted and analyzed. The results provide strong evidence that the increased phosphorylation of a 26-kD protein of pl 6.2, p26, is specifically induced by the SI response. This phosphorylation event occurs in living pollen tubes and was observed specifically when pollen was challenged with S proteins that are incompatible with the S alleles carried by the pollen and not when pollen was challenged with compatible or incompatible heat-denatured S proteins. Further characterization demonstrated that p26 comprises two phosphoproteins, p26.1 and p26.2, that are found in soluble and microsomal fractions, respectively. Increased phosphorylation of p26.1 is implicated in the SI response and appears to be Ca2+ and calmodulin dependent. These data argue for the involvement of a Ca2+-dependent protein kinase requiring calmodulin-like domains, whose activation comprises an intracellular signal mediating the SI response in P. rhoeas pollen.  相似文献   

8.
The self-incompatibility (SI) response in Papaver rhoeas involves a Ca2+-based signalling pathway, which mediates the SI-specific inhibition of incompatible pollen. We have previously reported the identification of p26.1, a pollen protein whose phosphorylation was increased specifically as a consequence of the SI response. We have investigated whether further specific protein phosphorylation events are induced in P. rhoeas pollen. Here we report the identification of an additional pollen protein, p68, which also responds to S proteins by an increase in its phosphorylation state. This phosphorylation event occurs in living pollen tubes grown in vitro , and can be observed specifically when pollen is challenged with biologically active S proteins that are incompatible with the S alleles carried by the pollen and not when pollen was challenged with compatible S proteins. The timing of the increase in phosphorylation of p68 is temporally later than that of p26.1, occurring between 240 sec and 400 sec after challenge. This suggests that its phosphorylation is downstream of p26.1 in the SI signalling pathway(s). Surprisingly, the kinases responsible for the phosphorylation of p68 are not Ca2+-dependent. This, and the later timing of the p68 response, suggests that a 'second wave' of Ca2+-independent signalling may follow the initial Ca2+-dependent SI signalling. This indicates that the SI signalling pathway(s) in pollen may be quite complex.  相似文献   

9.
Perennial ryegrass (Lolium perenne L.) is an outcrossing, wind-pollinated species exhibiting a gametophytic two-locus system of self-incompatibility (S and Z). The two incompatibility loci were genotyped in a cross between a doubled-haploid plant crossed as the female parent with a normal heterozygous plant. The S and Z loci were found to segregate in the expected 1:1 ratio and also segregated independently. The two loci were mapped to linkage groups one and two respectively, in accordance with the Triticeae consensus map. In addition, there were notable associations between the segregation of particular alleles mapping to the S locus region of linkage group 1 and those mapping to the WG889/CDO920 loci region of linkage group 3 which resulted in significant segregation distortions. No such associations were found between the Z locus and this region or any other region of the genome. The L. perenne S and Z loci showed conserved synteny with the equivalent loci in rye (Secale cereale L.).  相似文献   

10.
Sexual reproduction in flowering plants is controlled by recognition mechanisms involving the male gametophyte (the pollen) and the female sporophyte (the pistil). Self-incompatibility (SI) involves the recognition and rejection of self- or incompatible pollen by the pistil. In Papaver rhoeas, SI uses a Ca(2+)-based signalling cascade triggered by the S-protein, which is encoded by the stigmatic component of the S-locus. This results in the rapid inhibition of incompatible pollen tube growth. We have identified several targets of the SI signalling cascade, including protein kinases, the actin cytoskeleton and nuclear DNA. Here, we summarize progress made on currently funded projects in our laboratory investigating some of the components targeted by SI, comprising (i) the characterization of a pollen phosphoprotein (p26) that is rapidly phosphorylated upon an incompatible SI response; (ii) the identification and characterization of a pollen mitogen-activated protein kinase (p56), which exhibits enhanced activation during SI; (iii) characterizing components involved in the reorganization and depolymerization of the actin cytoskeleton during the SI response; and (iv) investigating whether the SI response involves a programmed cell death signalling cascade.  相似文献   

11.
The gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in vertebrate CNS. At GABAergic synapses, a high-affinity transporter exists, which is responsible for GABA reuptake and release during neurotransmission. GABA transporter activity depends on the phosphorylation/dephosphorylation state, being modulated by Ca(2+)/calmodulin-dependent protein phosphatase 2B (calcineurin). Aluminium is known to interfere with the Ca(2+)/calmodulin signalling pathway. In this work, we investigate the action of aluminium on GABA translocation mediated by the high-affinity transporter, using synaptic plasma membrane (SPM) vesicles and synaptosomes isolated from brain cortex. Aluminium completely relieved Ca(2+) downregulation of GABA transporter, when mediating uptake or release. Accordingly, aluminium inhibited Ca(2+)/calmodulin-dependent calcineurin activity present in SPM, in a concentration-dependent manner. The deleterious action of aluminium on the modulation of GABA transport was ascertained by comparative analysis of the aluminium effect on GABA uptake and release, under conditions favouring SPM dephosphorylation (presence of intracellular micromolar Ca(2+)) or phosphorylation (absence of Ca(2+) and/or presence of W-7, a selective calmodulin antagonist). In conclusion, aluminium-induced relief of Ca(2+) modulatory action on GABA transporter may contribute significantly to modify GABAergic signalling during neurotoxic events in response to aluminium exposure.  相似文献   

12.
ATP hydrolysis and Ca(2+) transport by the sarco-endoplasmic reticulum Ca(2+) ATPase (SERCA) are inhibited by 1,3-dibromo-2,4,6-tris(methylisothiouronium) benzene (Br(2)-TITU) in the micromolar range (Berman, M. C., and Karlish, S. J. (2003) Biochemistry 42, 3556-3566). In a study of the mechanism of inhibition, we found that Br(2)-TITU allows the enzyme to bind Ca(2+) and undergo phosphorylation by ATP. The level of ADP-sensitive phosphoenzyme (i.e. E1P-2Ca(2+)) observed in the transient state following addition of ATP is much higher in the presence than in the absence of the inhibitor. Br(2)-TITU does not interfere with enzyme phosphorylation by P(i) in the reverse direction of the cycle (i.e. E2P) and produces only a slight inhibition of its hydrolytic cleavage. The inhibitory effect of Br(2)-TITU on steady state ATPase velocity is attributed to interference with the E1P-2Ca(2+) to E2P-2Ca(2+) transition. In fact, experiments on conformation-dependent protection from proteolytic digestion suggest that, in the presence of Br(2)-TITU, the loops connecting the "A" domain to the ATPase transmembrane region undergo greater fluctuation than expected in the E2 and E2P states. Optimal stability of the gathered headpiece domains is thereby prevented. These effects are opposite to those of thapsigargin, in which the mechanism of inhibition is related to stabilization of a highly compact ATPase conformation and interference with Ca(2+) binding and phosphoenzyme formation. Our experiments with Br(2)-TITU provide the first demonstration of a kinetic limit posed by an inhibitor on the E1P-2Ca(2+) to E2P-2Ca(2+) transition in the wild-type enzyme.  相似文献   

13.
We tested the hypothesis that increases in force at a given cytosolic Ca(2+) concentration (i.e., Ca(2+) sensitization) produced by muscarinic stimulation of canine tracheal smooth muscle (CTSM) are produced in part by mechanisms independent of changes in regulatory myosin light chain (rMLC) phosphorylation. This was accomplished by comparing the relationship between rMLC phosphorylation and force in alpha-toxin-permeabilized CTSM in the absence and presence of acetylcholine (ACh). Forces were normalized to the contraction induced by 10 microM Ca(2+) in each strip, and rMLC phosphorylation is expressed as a percentage of total rMLC. ACh (100 microM) plus GTP (1 microM) significantly shifted the Ca(2+)-force relationship curve to the left (EC(50): 0.39 +/- 0.06 to 0.078 +/- 0.006 microM Ca(2+)) and significantly increased the maximum force (104.4 +/- 4.8 to 120.2 +/- 2.8%; n = 6 observations). The Ca(2+)-rMLC phosphorylation relationship curve was also shifted to the left (EC(50): 1.26 +/- 0.57 to 0.13 +/- 0.04 microM Ca(2+)) and upward (maximum rMLC phosphorylation: 70.9 +/- 7.9 to 88.5 +/- 5. 1%; n = 6 observations). The relationships between rMLC phosphorylation and force constructed from mean values at corresponding Ca(2+) concentrations were not different in the presence and absence of ACh. We find no evidence that muscarinic stimulation increases Ca(2+) sensitivity in CTSM by mechanisms other than increases in rMLC phosphorylation.  相似文献   

14.
Self-incompatibility (SI) is a widespread mechanism that prevents inbreeding in flowering plants. In many species, SI is controlled by a single locus (the S locus) where numerous alleles are maintained by negative frequency-dependent selection. Inbreeding depression, the decline in fitness of selfed individuals compared to outcrossed ones, is an essential factor in the evolution of SI systems. Conversely, breeding systems influence levels of inbreeding depression. Little is known about the joint effect of SI and drift on inbreeding depression. Here we studied, using a two-locus model, the effect of SI (frequency-dependent selection) on a locus subject to recurrent deleterious mutations causing inbreeding depression. Simulations were performed to assess the effect of population size and linkage between the two loci on the level of inbreeding depression and genetic load. We show that the sheltering of deleterious alleles linked to the S locus strengthens inbreeding depression in small populations. We discuss the implications of our results for the evolution of SI systems.  相似文献   

15.
The membrane-associated Mg(2+)-activated and Ca(2+)-activated adenosine 5'-triphosphatase (EC 3.6.1.3; ATPase) activities of Escherichia coli were further characterized. The degree of inhibition of membrane-bound Mg(2+)-(Ca(2+))-ATPase by a series of anions (i.e., sodium salts of nitrate, iodide, chloride, and acetate) was found to correlate with the relative chaotropic, or solubilizing, effectiveness of these anions. The enzyme was solubilized from washed membrane ghosts by treatment with 0.04% sodium lauryl sulfate at pH 9.0 and 37 C. Solubilized Mg(2+)-(Ca(2+))-ATPase exhibited an initial increase in activity, followed by fairly rapid inactivation, both ATPase activities being particularly cold-labile. The combined stabilizing effects of lauryl mercaptan (1-dodecanethiol), 0.01 m tris(hydroxymethyl)amino-methane-hydrochloride buffer (pH 9.0), 0.2 mm MgCl(2), and ambient temperature facilitated partial purification of the enzyme, the molecular weight of which was estimated to be approximately 100,000 by the gel filtration technique. In general, the membrane-associated Mg(2+)-(Ca(2+))-ATPase of E. coli resembles both mitochondrial membrane ATPase and the well-characterized membrane ATPases of Bacillus megaterium and Microcococcus lysodeikticus. It is of particular interest that N,N'-dicyclohexylcarbodiimide (DCCD), a known inhibitor of mitochondrial ATPase, of mitochondrial oxidative phosphorylation, and of the membrane-bound Mg(2+)-ATPase of Streptococcus faecalis was found to inhibit both the membrane-bound and the solubilized forms of E. coli Mg(2+)-(Ca(2+))-ATPase. The sensitivity of the membrane-associated Mg(2+)-(Ca(2+))-ATPase of E. coli to both anions and cations, its allotopic behavior, and its susceptibility to inhibition by DCCD favor the idea that this enzyme plays a key, probably polyfunctional, role in such biological activities of the membrane as oxidative phosphorylation and ion transport.  相似文献   

16.
Self incompatibility (SI) in Phalaris coerulescens is gametophytically determined by two unlinked multi allelic loci (S and Z). Neither the S nor Z genes have yet been cloned. As part of a map-based cloning strategy, high-resolution maps of the S and Z regions were generated from distorted segregating populations using RFLP probes from wheat, barley, oat, and Phalaris. The S locus was delimited to 0.26 cM with two boundary markers (Xwg811 and Xpsr168) and cosegregated with Xbm2 and Xbcd762. Xbcd266 was the closest marker linked to Z (0.9 cM). A high level of colinearity in the S and Z regions was found in both self-incompatible and -compatible species. The S locus was localized to the subcentromere region of chromosome 1 and the Z locus to the long arm end of chromosome 2. Several rice BAC clones orthologous to the S and Z locus regions were identified. This opens the possibility of using the rice genome sequence data to generate more closely linked markers and identify SI candidate genes. These results add further support to the conservation of gene order in the S and Z regions of the grass genomes.  相似文献   

17.
Calcium (Ca(2+)) is a universal regulator of a wide variety of cellular processes. For such control to be achieved, information is encoded within spatial and temporal components of the underlying Ca(2+) signal. One pathway through which Ca(2+) signals are decoded is the Ras binary switch. Here I describe some recent advances that have shed light on how cells can decode the spatial and temporal aspects of Ca(2+) signals through the regulation of this important signalling switch.  相似文献   

18.
Sexual reproduction in higher plants uses pollination, involving interactions between pollen and pistil. Self-incompatibility (SI) prevents self-fertilization, providing an important mechanism to promote outbreeding. SI is controlled by the S-locus; discrimination occurs between incompatible pollen, which is rejected, while compatible pollen can achieve fertilization. In Papaver rhoeas, S proteins encoded by the pistil part of the S-locus interact with incompatible pollen to effect rapid inhibition of tip growth. This self-incompatible interaction triggers a Ca(2+)-dependent signalling cascade. SI-specific events triggered in incompatible pollen include rapid depolymerization of the actin cytoskeleton; phosphorylation of soluble inorganic pyrophosphatases, and activation of a MAPK. It has recently been shown that programmed cell death (PCD) is triggered by SI. This provides a precise mechanism for the specific destruction of 'self' pollen. Recent data providing evidence for SI-induced caspase-3-like protease activity, and the involvement of actin depolymerization and MAPK activation in SI-mediated PCD will be discussed. These studies not only significantly advance our understanding of the mechanisms involved in SI, but also contribute to our understanding of functional links between signalling components and initiation of PCD in a plant cell. Recent data demonstrating SI-mediated modification of soluble inorganic pyrophosphatases are also described.  相似文献   

19.
Calcium (Ca(2+)) is a fundamental intracellular signalling molecule in neurons. Therefore, significant interest has been expressed in understanding how the dysregulation of Ca(2+) signals might impact on neuronal function and the progression of different disease states. Many previous studies have examined the role of Ca(2+) in neuronal excitotoxicity and some have started to understand how Ca(2+) dysregulation might be a cause or consequence of neurodegeneration. This review will therefore focus on the significance of Ca(2+) sensors, proteins that transduce Ca(2+) signals, in neuronal function and dysfunction. Finally, we will assess their potential role in neurodegenerative processes, such as Alzheimer's disease (AD), arguing that they could serve as potential therapeutic targets.  相似文献   

20.
Mitochondria as sensors and regulators of calcium signalling   总被引:1,自引:0,他引:1  
During the past two decades calcium (Ca(2+)) accumulation in energized mitochondria has emerged as a biological process of utmost physiological relevance. Mitochondrial Ca(2+) uptake was shown to control intracellular Ca(2+) signalling, cell metabolism, cell survival and other cell-type specific functions by buffering cytosolic Ca(2+) levels and regulating mitochondrial effectors. Recently, the identity of mitochondrial Ca(2+) transporters has been revealed, opening new perspectives for investigation and molecular intervention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号