首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 628 毫秒
1.
Subcellular distribution of calmodulin (CaM) in human immunodeficiency virus type-1 (HIV-1)-infected cells is distinct from that observed in uninfected cells. CaM co-localizes and interacts with the HIV-1 Gag protein in the cytosol of infected cells. Although it has been shown that binding of Gag to CaM is mediated by the matrix (MA) domain, the structural details of this interaction are not known. We have recently shown that binding of CaM to MA induces a conformational change that triggers myristate exposure, and that the CaM-binding domain of MA is confined to a region spanning residues 8–43 (MA-(8–43)). Here, we present the NMR structure of CaM bound to MA-(8–43). Our data revealed that MA-(8–43), which contains a novel CaM-binding motif, binds to CaM in an antiparallel mode with the N-terminal helix (α1) anchored to the CaM C-terminal lobe, and the C-terminal helix (α2) of MA-(8–43) bound to the N-terminal lobe of CaM. The CaM protein preserves a semiextended conformation. Binding of MA-(8–43) to CaM is mediated by numerous hydrophobic interactions and stabilized by favorable electrostatic contacts. Our structural data are consistent with the findings that CaM induces unfolding of the MA protein to have access to helices α1 and α2. It is noteworthy that several MA residues involved in CaM binding have been previously implicated in membrane binding, envelope incorporation, and particle production. The present findings may ultimately help in identification of the functional role of CaM in HIV-1 replication.  相似文献   

2.
Steady progress has been made in defining both the viral and cellular determinants of retroviral assembly and release. Although it is widely accepted that targeting of the Gag polypeptide to the plasma membrane is critical for proper assembly of HIV-1, the intracellular interactions and trafficking of Gag to its assembly sites in the infected cell are poorly understood. HIV-1 Gag was shown to interact and co-localize with calmodulin (CaM), a ubiquitous and highly conserved Ca(2+)-binding protein expressed in all eukaryotic cells, and is implicated in a variety of cellular functions. Binding of HIV-1 Gag to CaM is dependent on calcium and is mediated by the N-terminally myristoylated matrix (myr(+)MA) domain. Herein, we demonstrate that CaM binds to myr(+)MA with a dissociation constant (K(d)) of ~2 μm and 1:1 stoichiometry. Strikingly, our data revealed that CaM binding to MA induces the extrusion of the myr group. However, in contrast to all known examples of CaM-binding myristoylated proteins, our data show that the myr group is exposed to solvent and not involved in CaM binding. The interactions between CaM and myr(+)MA are endothermic and entropically driven, suggesting that hydrophobic contacts are critical for binding. As revealed by NMR data, both CaM and MA appear to engage substantial regions and/or undergo significant conformational changes upon binding. We believe that our findings will provide new insights on how Gag may interact with CaM during the HIV replication cycle.  相似文献   

3.
The MA protein from HIV-1 is a small, multifunctional protein responsible for regulating various stages of the viral replication cycle. To achieve its diverse tasks, MA interacts with host cell proteins and it has been reported that one of these is the ubiquitous calcium-sensing calmodulin (CaM), which is up-regulated upon HIV-1 infection. The nature of the CaM-MA interaction has been the subject of structural studies, using peptides based on the MA sequence, that have led to conflicting conclusions. The results presented here show that CaM binds intact MA with 1:1 stoichiometry in a Ca2+-dependent manner and that the complex adopts a highly extended conformation in solution as revealed by small-angle X-ray scattering. Alterations in tryptophan fluorescence suggest that the two buried tryptophans (W16 and W36) located in the first two alpha-helices of MA mediate the CaM interaction. Major chemical shift changes occur in the NMR spectrum of MA upon complex formation, whereas chemical shift changes in the CaM spectrum are quite modest and are assigned to residues within the normal target protein-binding hydrophobic clefts of CaM. The NMR data indicate that CaM binds MA via its N- and C-terminal lobes and induces a dramatic conformational change involving a significant loss of secondary and tertiary structure within MA. Circular dichroism experiments suggest that MA loses ∼ 20% of its α-helical content upon CaM binding. Thus, CaM binding is expected to impact upon the accessibility of interaction sites within MA that are involved in its various functions.  相似文献   

4.
Bouamr F  Scarlata S  Carter C 《Biochemistry》2003,42(21):6408-6417
Assembly of the human immunodeficiency virus type 1 (HIV-1) first occurs on the plasma membrane of host cells where binding is driven by strong electrostatic interactions between the N-terminal matrix (MA) domain of the structural precursor polyprotein, Gag, and the membrane. MA is also myristylated, but the exact role this modification plays is not clear. In this study, we compared the protein oligomerization and membrane binding properties of Myr(+) and Myr(-) Gag(MA) expressed in COS-1 cells. Sedimentation studies in solution showed that both the myristylated Gag precursor and the mature MA product were detected in larger complexes than their unmyristylated counterparts, and the myristylated MA protein bound liposomes with approximately 3-fold greater affinity than unmyristylated MA. Aromatic residues near the N-terminal region of the MA protein were more accessible to chymotrypsin in the unmyristylated form and, consistent with this, an epitope in the N-terminal region was more exposed. Moreover, the cyclophilin binding site in the CA domain downstream of MA was more accessible in the unmyristylated Gag protein, while the Tsg101 binding site in the C-terminal region was equally available in the unmyristylated and myristylated Gag proteins. Taken together, our results suggest that myristylation promotes assembly by inducing conformational changes and facilitating MA multimerization. This observation offers a novel role for myristylation.  相似文献   

5.
The HIV-1 Gag polyprotein contains a segment called p2, located between the capsid (CA) and nucleocapsid (NC) domains, that is essential for ordered virus assembly and infectivity. We subcloned, overexpressed, and purified a 156-residue polypeptide that contains the C-terminal capsid subdomain (CA(CTD)) through the NC domain of Gag (CA(CTD)-p2-NC, Gag residues 276-431) for NMR relaxation and sedimentation equilibrium (SE) studies. The CA(CTD) and NC domains are folded as expected, but residues of the p2 segment, and the adjoining thirteen C-terminal residues of CA(CTD) and thirteen N-terminal residues of NC, are flexible. Backbone NMR chemical shifts of these 40 residues deviate slightly from random coil values and indicate a small propensity toward an alpha-helical conformation. The presence of a transient coil-to-helix equilibrium may explain the unusual and necessarily slow proteolysis rate of the CA-p2 junction. CA(CTD)-p2-NC forms dimers and self-associates with an equilibrium constant (Kd = 1.78 +/- 0.5 microM) similar to that observed for the intact capsid protein (Kd = 2.94 +/- 0.8 microM), suggesting that Gag self-association is not significantly influence by the P2 domain.  相似文献   

6.
Human immunodeficiency virus (HIV) and equine infectious anemia virus (EIAV) are closely related lentiviruses that infect immune cells, but their pathogenesis differ. Localization to the cytosolic leaflet of the plasma membrane is critical for replication of both viruses. This localization is accomplished through the matrix (MA) domain of the Gag precursor protein. In HIV-1, association of MA to anionic membranes appears to be primarily driven by a linear cluster of basic residues in the MA domain and an N-myristoylation signal. Interestingly, the MA protein of EIAV does not contain either of these signals. To understand which factors could promote EIAV assembly we characterized the membrane binding properties of its MA protein using fluorescence and biochemical methods. We find that EIAV MA exists as a multimer in solution whose protein-protein interactions are destabilized by membrane binding. EIAV MA binds strongly to electrically neutral membranes as well as to negatively charged membranes. Fluorescence quenching and chemical modification techniques, as well as trypsin proteolysis, indicate a different exposure of the EIAV MA Trp residues when bound to the two types of membranes, and EIAV MA proteolysis by trypsin differs when bound to the two types of membranes. Based on these data and the known structures of closely related matrix proteins, we constructed a structural model. This model predicts that EIAV MA binds to negatively charged membranes, but EIAV MA has an additional membrane binding region rich in residues that partition favorably into the membrane headgroup region. This secondary site may play a role in early events of viral infection.  相似文献   

7.
We and others have presented evidence for a direct interaction between the matrix (MA) domain of the human immunodeficiency virus type 1 (HIV-1) Gag protein and the cytoplasmic tail of the transmembrane envelope (Env) glycoprotein gp41. In addition, it has been postulated that the MA domain of Gag undergoes a conformational change following Gag processing, and the cytoplasmic tail of gp41 has been shown to modulate Env-mediated membrane fusion activity. Together, these results raise the possibility that the interaction between the gp41 cytoplasmic tail and MA is regulated by protease (PR)-mediated Gag processing, perhaps affecting Env function. To examine whether Gag processing affects Env-mediated fusion, we compared the ability of wild-type (WT) HIV-1 Env and a mutant lacking the gp41 cytoplasmic tail to induce fusion in the context of an active (PR(+)) or inactive (PR(-)) viral PR. We observed that PR(-) virions bearing WT Env displayed defects in cell-cell fusion. Impaired fusion did not appear to be due to differences in the levels of virion-associated Env, in CD4-dependent binding to target cells, or in the formation of the CD4-induced gp41 six-helix bundle. Interestingly, truncation of the gp41 cytoplasmic tail reversed the fusion defect. These results suggest that interactions between unprocessed Gag and the gp41 cytoplasmic tail suppress fusion.  相似文献   

8.
Ubiquitin is important for the release of human immunodeficiency virus type 1 (HIV-1) and several other retroviruses, but the functional significance of Gag ubiquitination is unknown. To address this problem, we decided to analyze Gag ubiquitination in detail. A low percentage of the HIV-1 p6 protein has previously been shown to be ubiquitinated, and published mutagenesis data suggested that Gag ubiquitination is largely lost upon mutation of the two lysine residues in p6. In this study, we show that Gag proteins lacking the p6 domain or the two lysine residues within p6 are ubiquitinated at levels comparable to those of the wild-type Gag protein. We detected monoubiquitinated forms of the matrix (MA), capsid (CA), and nucleocapsid (NC) proteins in mature virus preparations. Protease digestion of Gag polyproteins extracted from immature virions indicated that ubiquitinated MA, CA, and possibly NC are as abundant as ubiquitinated p6. The HIV-1 late-domain motifs PTAP and LRSLF were not required for Gag ubiquitination, and mutation of the PTAP motif even resulted in an increase in the amount of Gag-Ub conjugates detected. Finally, at steady state, ubiquitinated Gag proteins were not enriched in either membrane-associated or virus-derived Gag fractions. In summary, these results indicate that HIV-1 Gag can be monoubiquitinated in all domains and that ubiquitination of lysine residues outside p6 may thus contribute to viral release and/or infectivity.  相似文献   

9.
To map functional domains in the retroviral Gag protein we have constructed chimeric viruses where regions of the murine leukemia virus (MuLV) Gag protein have been replaced with analogous sequences from human immunodeficiency virus type 1 (HIV-1). Here we describe the chimeric virus MuLV(MAHIV) which contains the HIV-1 matrix (MA) protein in place of the MuLV MA. MuLV(MAHIV) is infectious but grows at a reduced rate compared with wild-type MuLV. We found that the partial defect in replication of the chimeric virus is at a late stage in the viral life cycle. The MuLV(MAHIV) Gag proteins are distributed aberrantly within cells and are not associated with cellular membranes. Unlike MuLV, HIV-1 is able to integrate into growth-arrested cells. Incorporation of the HIV-1 MA, which is known to play a role in infection of nondividing cells, does not enable MuLV(MAHIV) to be expressed in growth-arrested cells. While it possesses no amino acid homology, we found that the HIV-1 MA can efficiently replace the MuLV matrix protein in infection.  相似文献   

10.
Matrix (MA), a major structural protein of retroviruses, is thought to play a critical role in several steps of the HIV-1 replication cycle, including the plasma membrane targeting of Gag, the incorporation of envelope (Env) glycoproteins into nascent particles, and the nuclear import of the viral genome in non-dividing cells. We now show that the entire MA protein is dispensable for the incorporation of HIV-1 Env glycoproteins with a shortened cytoplasmic domain. Furthermore, efficient HIV-1 replication in the absence of up to 90% of MA was observed in a cell line in which the cytoplasmic domain of Env is not required. Additional compensatory changes in Gag permitted efficient virus replication even if all of MA was replaced by a heterologous membrane targeting signal. Viruses which lacked the globular domain of MA but retained its N-terminal myristyl anchor exhibited an increased ability to form both extracellular and intracellular virus particles, consistent with a myristyl switch model of Gag membrane targeting. Pseudotyped HIV-1 particles that lacked the structurally conserved globular head of MA efficiently infected macrophages, indicating that MA is dispensable for nuclear import in terminally differentiated cells.  相似文献   

11.
Recent studies indicate that the matrix domain (MA) of the HIV-1 Gag polyprotein directs Gag to the plasma membrane for virus assembly via a phosphatidylinositol-4,5-bisphosphate (PIP(2))-dependent myristyl switch mechanism. MA also has been reported to direct nuclear trafficking via nuclear import and export functions, and some studies suggest that nuclear targeting may be regulated by MA phosphorylation (although this proposal remains controversial). We have prepared and studied a series of HIV-1 MA mutants containing Ser-to-Asp substitutions designed to mimic phosphorylation, including substitutions in regions of the protein involved in protein-protein interactions and known to influence the myristyl switch (S6D, S9D, S67D, S72D, S6D/S9D, and S67D/S72D). We were particularly interested in substitutions at residue 6, since conservative mutations adjacent to this site strongly perturb the myristyl switch equilibrium, and this site had not been genetically tested due to its involvement in post-translational myristylation. Our studies reveal that none of these mutations, including S6D, influences the PIP(2)- or concentration-dependent myristyl switch equilibrium. In addition, all of the mutants bind liposomes with affinities that are only slightly reduced in comparison with the native protein. In contrast, the myristylated mutants bind liposomes with substantially greater affinity than that of the native, unmyristylated protein. These findings support the hypothesis that phosphorylation is unlikely to significantly influence membrane-mediated intracellular trafficking.  相似文献   

12.
Human immunodeficiency virus type 1 (HIV-1) particle formation and the subsequent initiation of protease-mediated maturation occur predominantly on the plasma membrane. However, the mechanism by which HIV-1 assembly is targeted specifically to the plasma membrane versus intracellular membranes is largely unknown. Previously, we observed that mutations between residues 84 and 88 of the matrix (MA) domain of HIV-1 Gag cause a retargeting of virus particle formation to an intracellular site. In this study, we demonstrate that the mutant virus assembly occurs in the Golgi or in post-Golgi vesicles. These particles undergo core condensation in a protease-dependent manner, indicating that virus maturation can occur not only on the plasma membrane but also in the Golgi or post-Golgi vesicles. The intracellular assembly of mutant particles is dependent on Gag myristylation but is not influenced by p6(Gag) or envelope glycoprotein expression. Previous characterization of viral revertants suggested a functional relationship between the highly basic domain of MA (amino acids 17 to 31) and residues 84 to 88. We now demonstrate that mutations in the highly basic domain also retarget virus particle formation to the Golgi or post-Golgi vesicles. Although the basic domain has been implicated in Gag membrane binding, no correlation was observed between the impact of mutations on membrane binding and Gag targeting, indicating that these two functions of MA are genetically separable. Plasma membrane targeting of Gag proteins with mutations in either the basic domain or between residues 84 and 88 was rescued by coexpression with wild-type Gag; however, the two groups of MA mutants could not rescue each other. We propose that the highly basic domain of MA contains a major determinant of HIV-1 Gag plasma membrane targeting and that mutations between residues 84 and 88 disrupt plasma membrane targeting through an effect on the basic domain.  相似文献   

13.
The vpr gene of human immunodeficiency virus type 1 (HIV-1) encodes a virion-associated regulatory protein. Mutagenesis has shown that the virion association of Vpr requires sequences near the C terminus of the HIV-1 Gag polyprotein Pr55gag. To investigate whether Vpr incorporation is mediated by a specific domain of Pr55gag, we examined the ability of chimeric HIV-1/Moloney murine leukemia virus (MLV) Gag polyproteins to direct the incorporation of Vpr. Vpr expressed in trans did not associate with particles formed by the authentic MLV Gag polyprotein or with particles formed by chimeric Gag polyproteins that had the matrix (MA) or capsid (CA) domain of MLV precisely replaced by the corresponding domain of HIV-1HXB2. By contrast, Vpr was efficiently incorporated upon replacement of the C-terminal nucleocapsid (NC) domain of the MLV Gag polyprotein with HIV-1 p15 sequences. Vpr was also efficiently incorporated into particles formed by a MLV Gag polyprotein that had the HIV-1 p6 domain fused to its C terminus. Furthermore, a deletion analysis revealed that a conserved region near the C terminus of the p6 domain is essential for Vpr incorporation, whereas sequences downstream of the conserved region are dispensable. These results show that a virion association motif for Vpr is located within residues 1 to 46 of p6.  相似文献   

14.
Human immunodeficiency virus type 1 (HIV-1) gag-encoded proteins play key functions at almost all stages of the viral life cycle. Since these functions may require association with cellular factors, the HIV-1 matrix protein (MA) was used as bait in a yeast two-hybrid screen to identify MA-interacting proteins. MA was found to interact with elongation factor 1-alpha (EF1alpha), an essential component of the translation machinery that delivers aminoacyl-tRNA to ribosomes. EF1alpha was then shown to bind the entire HIV-1 Gag polyprotein. This interaction is mediated not only by MA, but also by the nucleocapsid domain, which provides a second, independent EF1alpha-binding site on the Gag polyprotein. EF1alpha is incorporated within HIV-1 virion membranes, where it is cleaved by the viral protease and protected from digestion by exogenously added subtilisin. The specificity of the interaction is demonstrated by the fact that EF1alpha does not bind to nonlentiviral MAs and does not associate with Moloney murine leukemia virus virions. The Gag-EF1alpha interaction appears to be mediated by RNA, in that basic residues in MA and NC are required for binding to EF1alpha, RNase disrupts the interaction, and a Gag mutant with undetectable EF1alpha-binding activity is impaired in its ability to associate with tRNA in cells. Finally, the interaction between MA and EF1alpha impairs translation in vitro, a result consistent with a previously proposed model in which inhibition of translation by the accumulation of Gag serves to release viral RNA from polysomes, permitting the RNA to be packaged into nascent virions.  相似文献   

15.
Cryoelectron micrographs of purified human foamy virus (HFV) and feline foamy virus (FFV) particles revealed distinct radial arrangements of Gag proteins. The capsids were surrounded by an internal Gag layer that in turn was surrounded by, and separated from, the viral membrane. The width of this layer was about 8 nm for HFV and 3.8 nm for FFV. This difference in width is assumed to reflect the different sizes of the HFV and FFV MA domains: the HFV MA domain is about 130 residues longer than that of FFV. The distances between the MA layer and the edge of the capsid were identical in different particle classes. In contrast, only particles with a distended envelope displayed an invariant, close spacing between the MA layer and the Env membrane which was absent in the majority of particles. This indicates a specific interaction between MA and Env at an unknown step of morphogenesis. This observation was supported by surface plasmon resonance studies. The purified N-terminal domain of FFV Gag specifically interacted with synthetic peptides and a defined protein domain derived from the N-terminal Env leader protein. The specificity of this interaction was demonstrated by using peptides varying in the conserved Trp residues that are known to be required for HFV budding. The interaction with Gag required residues within the novel virion-associated FFV Env leader protein of about 16.5 kDa.  相似文献   

16.
P P Lee  M L Linial 《Journal of virology》1994,68(10):6644-6654
Lentiviruses, such as human immunodeficiency virus type 1 (HIV-1), assemble at and bud through the cytoplasmic membrane. Both the matrix (MA) domain of Gag and its amino-terminal myristylation have been implicated in these processes. We have created HIV-1 proviruses lacking the entire matrix domain of gag which either lack or contain an amino-terminal myristate addition sequence at the beginning of the capsid domain. Myristate- and matrix-deficient [myr(-)MA(-)] viruses produced after transient transfection are still able to assemble into particles, although the majority do not form at the plasma membrane or bud efficiently. Myristylation of the amino terminus of the truncated Gag precursor permits a much more efficient release of the mutant virions. While myr(-)MA(-) particles were inefficient in proteolytic processing of the Gag precursor, myristylation enabled efficient proteolysis of the mutant Gag. All matrix-deficient viruses are noninfectious. Particles produced by matrix-deficient mutants contain low levels of glycoproteins, indicating the importance of matrix in either incorporation or stable retention of Env. Since matrix-deficient viruses contain a normal complement of viral genomic RNA, a role for MA in genomic incorporation can be excluded. Contrary to previous reports, the HIV-1 genome does not require sequences between the 5' splice donor site and the gag start codon for efficient packaging.  相似文献   

17.
The solution structures of complexes between calcium-saturated calmodulin (Ca (2+)/CaM) and a CaM-binding domain of the HIV-1 matrix protein p17 have been determined by small-angle X-ray scattering with use of synchrotron radiation as an intense and stable X-ray source. We used three synthetic peptides of residues 11-28, 26-47, and 11-47 of p17 to demonstrate the diversity of CaM-binding conformation. Ca (2+)/CaM complexed with residues 11-28 of p17 adopts a dumbbell-like structure at a molar ratio of 1:2, suggesting that the two peptides bind each lobe of CaM, respectively. Ca (2+)/CaM complexed with residues 26-47 of p17 at a molar ratio of 1:1 adopts a globular structure similar to the NMR structure of Ca (2+)/CaM bound to M13, which adopted a compact globular structure. In contrast to these complexes, Ca (2+)/CaM binds directly with both CaM-binding sites of residues 11-47 of p17 at a molar ratio of 1:1, which induces a novel structure different from known structures previously reported between Ca (2+)/CaM and peptide. A tertiary structural model of the novel structure was constructed using the biopolymer module of Insight II 2000 on the basis of the scattering data. The two domains of CaM remain essentially unchanged upon complexation. The hinge motions, however, occur in a highly flexible linker of CaM, in which the electrostatic residues 74Arg, 78Asp, and 82Glu interact with N-terminal electrostatic residues of the peptide (residues 12Glu, 15Arg, and 18Lys). The acidic residues in the N-terminal domain of CaM interact with basic residues in a central part of the peptide, thereby enabling the central part to change the conformations, while an acidic residue in the C-terminal domain interacts with two basic residues in the two helical sites of the peptide. The overall structure of the complex adopts an extended structure with the radius of gyration of 20.5 A and the interdomain distance of 34.2 A. Thus, the complex is principally stabilized by electrostatic interactions. The hydrophobic patches of Ca (2+)/CaM are not responsible for the binding with the hydrophobic residues in the peptide, suggesting that CaM plays a role to sequester the myristic acid moiety of p17.  相似文献   

18.
Human immunodeficiency virus type 1 (HIV-1) Gag multimerization and membrane binding are required for particle formation. However, it is unclear what constitutes a minimal plasma membrane-specific targeting signal and what role the matrix (MA) globular head and other Gag domains play in membrane targeting. Here, we use membrane flotation and microscopic analysis of Gag deletion mutants to demonstrate that the HIV-1 MA globular head inhibits a plasma membrane-specific targeting signal contained within the six amino-terminal MA residues. MA-mediated inhibition is relieved by concentration-dependent Gag multimerization and imparts a high degree of cooperativity on Gag-membrane association. This cooperativity may confer temporal and spatial regulation on HIV-1 assembly.  相似文献   

19.
X Wu  J A Conway  J Kim    J C Kappes 《Journal of virology》1994,68(10):6161-6169
Viral protein X (Vpx) is a human immunodeficiency virus type 2 (HIV-2) and simian immunodeficiency virus accessory protein that is packaged into virions in molar amounts equivalent to Gag proteins. To delineate the processes of virus assembly that mediate Vpx packaging, we used a recombinant vaccinia virus-T7 RNA polymerase system to facilitate Gag protein expression, particle assembly, and extracellular release. HIV genes were placed under control of the bacteriophage T7 promoter and transfected into HeLa cells expressing T7 RNA polymerase. Western immunoblot analysis detected p55gag and its cleavage products p39 and p27 in purified particles derived by expression of gag and gag-pol, respectively. In trans expression of vpx with either HIV-2 gag or gag-pol gave rise to virus-like particles that contained Vpx in amounts similar to that detected in HIV-2 virus produced from productively infected T cells. Using C-terminal deletion and truncation mutants of HIV-2 Gag, we mapped the p15 coding sequence for determinants of Vpx packaging. This analysis revealed a region (residues 439 to 497) downstream of the nucleocapsid protein (NC) required for incorporation of Vpx into virions. HIV-1/HIV-2 gag chimeras were constructed to further characterize the requirements for incorporation of Vpx into virions. Chimeric HIV-1/HIV-2 Gag particles consisting of HIV-1 p17 and p24 fused in frame at the C terminus with HIV-2 p15 effectively incorporate Vpx, while chimeric HIV-2/HIV-1 Gag particles consisting of HIV-2 p17 and p27 fused in frame at the C terminus with HIV-1 p15 do not. Expression of a 68-amino-acid sequence of HIV-2 containing residues 439 to 497 fused to the coding regions of HIV-1 p17 and p24 also produced virus-like particles capable of packaging Vpx in amounts similar to that of full-length HIV-2 Gag. Sucrose gradient analysis confirmed particle association of Vpx and Gag proteins. These results demonstrate that the HIV-2 Gag precursor (p55) regulates incorporation of Vpx into virions and indicates that the packaging signal is located within residues 439 to 497.  相似文献   

20.
We have previously shown that the expression of human immunodeficiency virus type 1 (HIV-1) Gag protein in Saccharomyces cerevisiae spheroplasts produces Gag virus-like particles (VLPs) at the plasma membrane, indicating that yeast has all the host factors necessary for HIV-1 Gag assembly. Here we expand the study by using diverse primate lentiviral Gags and show that yeast does not support the production of HIV-2 or simian immunodeficiency virus SIVmac Gag VLPs but allows the production of SIVagm and SIVmnd Gag VLPs. Particle budding was observed at the surfaces of cells expressing SIVagm and SIVmnd Gags, but cells expressing HIV-2 and SIVmac Gags showed only membrane-ruffling structures, although they were accompanied with electron-dense submembrane layers, suggesting arrest at an early stage of particle budding. Comparison of HIV-1 and HIV-2 Gag expression revealed broadly equivalent levels of intracellular Gag expression and Gag N-terminal myristoylation in yeast. Both Gags showed the same membrane-binding ability and were incorporated into lipid raft fractions at a physiological concentration of salt. HIV-2 Gag, however, failed to form a high-order multimer and easily dissociated from the membrane, phenomena which were not observed in higher eukaryotic cells. A series of chimeric Gags between HIV-1 and HIV-2 and Gag mutants with amino acid substitutions revealed that a defined region in helix 2 of HIV-2 MA (located on the membrane-binding surface of MA) affects higher-order Gag assembly and particle production in yeast. Together, these data suggest that yeast may lack a host factor(s) for HIV-2 and SIVmac Gag assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号