首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The N(1)-acetylation of spermidine or spermine by spermidine/spermine N(1)-acetyltransferase (SSAT) is the ratecontrolling enzymatic step in the polyamine catabolism. We have now generated SSAT knockout (SSAT-KO) mice, which confirmed our earlier results with SSATdeficient embryonic stem (ES) cells showing only slightly affected polyamine homeostasis, mainly manifested as an elevated molar ratio of spermidine to spermine in most tissues indicating the indispensability of SSAT for the spermidine backconversion.Contrary to SSAT deficient ES cells, polyamine pools in SSAT-KO mice remained almost unchanged in response to N(1),N(11)-diethylnorspermine (DENSPM) treatment compared to a significant reduction of the polyamine pools in the wild-type animals and ES cells. Furthermore, SSATKO mice were more sensitive to the toxicity exerted by DENSPM in comparison with wild-type mice. The latter finding indicates that inducible SSAT plays an essential role in vivo in DENSPM treatmentevoked polyamine depletion, but a controversial role in toxicity of DENSPM. Surprisingly, liver polyamine pools were depleted similarly in wild-type and SSAT-KO mice in response to carbon tetrachloride treatment. Further characterization of SSAT knockout mice revealed insulin resistance at old age which supported the role of polyamine catabolism in glucose metabolism detected earlier with our SSAT overexpressing mice displaying enhanced basal metabolic rate, high insulin sensitivity and improved glucose tolerance. Therefore SSAT knockout mice might serve as a novel mouse model for type 2 diabetes.  相似文献   

2.
We isolated several clones with a wide range of responses to X radiation from an unirradiated human colorectal (HCT 116) tumor cell line. The responses of one of these clones (HCT116-Clone10) and nine other clones to either fractionated or acute (i.e. single, nonfractionated doses) X irradiation in vitro was similar to that of the parental cell line. By contrast, after the same types of treatment, another clone (HCT116-Clone2) manifested a significantly increased survival whereas a third clone (HCT116-CloneK) manifested a significantly decreased survival relative to the parental cell line. This suggested that they were, respectively, a radioresistant and a radiosensitive clone. All three clones (clones 2, 10, K) retained their tumorigenic phenotype and formed tumors in nude mice. G-banding studies demonstrated that they were of human origin and were derived from the same parental cell line. The metaphases of HCT116-Clone2 demonstrated features commonly associated with genomic instability (i.e. mitotic catastrophe including chromosome and chromatid breaks, dicentrics and additional nonclonal markers). Data obtained by quantitative fluorescence in situ hybridization (Q- FISH) analysis failed to demonstrate any apparent correlation between the radiosensitivity and the relative telomere content of these three clones. Interestingly, HCT116-CloneK was the most resistant to several chemotherapeutic drugs (topotecan, camptothecin, etoposide and cisplatin) with diverse mechanisms of action. Also, there were no significant differences in the survivals of the three clones after treatment with UV radiation. Because of the lack of overlap among the relative sensitivities of these clones to X radiation, chemotherapeutic drugs and UV radiation, these clones may be useful models for evaluating the genetic basis of the response of human tumor cells to these treatment agents both in vitro and in vivo.  相似文献   

3.
The N1-acetylation of spermidine or spermine by spermidine/spermine N1-acetyltransferase (SSAT) is the ratecontrolling enzymatic step in the polyamine catabolism. We have now generated SSAT knockout (SSAT-KO) mice, which confirmed our earlier results with SSAT deficient embryonic stem (ES) cells showing only slightly affected polyamine homeostasis, mainly manifested as an elevated molar ratio of spermidine to spermine in most tissues indicating the indispensability of SSAT for the spermidine backconversion. Contrary to SSAT deficient ES cells, polyamine pools in SSAT-KO mice remained almost unchanged in response to N1, N11-diethylnorspermine (DENSPM) treatment compared to a significant reduction of the polymine pools in the wild-type animals and ES cells. Furthermore, SSATKO mice were more sensitive to the toxicity exerted by DENSPM in comparison with wild-type mice. The latter finding indicates that inducible SSAT plays an essential role in vivo in DENSPM treatmentevoked polyamine depletion, but a controversial role in toxicity of DENSPM. Surprisingly, liver polyamine pools were depleted similarly in wild type and SSAT-KO mice in response to carbon tetrachloride treatment. Further characterization of SSAT knockout mice revealed insulin resistance at old age which supported the role of polyamine catabolism in glucose metabolism detected earlier with our SSAT overexpressing mice displaying enhanced basal metabolic rate, high insulin sensitivity and improved glucose tolerance. Therefore SSAT knockout mice might serve as a novel mouse model for type 2 diabetes.  相似文献   

4.
5.
The spermine analogue N(1),N(11)-diethylnorspermine (DENSPM) efficiently depletes the cellular pools of putrescine, spermidine and spermine by down-regulating the activity of the polyamine biosynthetic enzymes and up-regulating the activity of the catabolic enzyme spermidine/ spermine N(1)-acetyltransferase (SSAT). In the breast cancer cell line L56Br-C1, treatment with 10 microm DENSPM induced SSAT activity 60 and 240-fold at 24 and 48 h after seeding, respectively, which resulted in polyamine depletion. Cell proliferation appeared to be totally inhibited and within 48 h of treatment, there was an extensive apoptotic response. Fifty percent of the cells were found in the sub-G(1) region, as determined by flow cytometry, and the presence of apoptotic nuclei was morphologically assessed by fluorescence microscopy. Caspase-3 and caspase-9 activities were significantly elevated 24 h after seeding. At 48 h after seeding, caspase-3 and caspase-9 activities were further elevated and at this time point a significant activation of caspase-8 was also found. The DENSPM-induced cell death was dependent on the activation of the caspases as it was inhibited by the general caspase inhibitor Z-Val-Ala-Asp fluoromethyl ketone. The results are discussed in the light of the L56Br-C1 cells containing mutated BRCA1 and p53, two genes involved in DNA repair.  相似文献   

6.
We have been investigating the effects of natural polyamines and polyamine analogues on the survival and apoptosis of chondrocytes, which are cells critical for cartilage integrity. Treatment of human C‐28/I2 chondrocytes with N1,N11‐diethylnorspermine (DENSPM), a polyamine analogue with clinical relevance as an experimental anticancer agent, rapidly induced spermidine/spermine N1‐acetyltransferase (SSAT) and spermine oxidase (SMO), key enzymes of polyamine catabolism and down‐regulated ornithine decarboxylase, the first enzyme of polyamine biosynthesis, thus depleting all main polyamines within 24 h. The treatment with DENSPM did not provoke cell death and caspase activation when given alone for 24 h, but caused a caspase‐3 and ‐9 dependent apoptosis in chondrocytes further exposed to cycloheximide (CHX). In other cellular models, enhanced polyamine catabolism or polyamine depletion has been implicated as mechanisms involved in DENSPM‐related apoptosis. However, the simultaneous addition of DENSPM and CHX rapidly increased caspase activity in C‐28/I2 cells in the absence of SSAT and SMO induction or significant reduction of polyamine levels. Moreover, caspase activation induced by DENSPM plus CHX was not prevented by a N1‐acetylpolyamine oxidase (PAO)/SMO inhibitor, and depletion of all polyamines obtained by specific inhibitors of polyamine biosynthesis did not reproduce DENSPM effects in the presence of CHX. DENSPM/CHX‐induced apoptosis was associated with changes in the amount or activation of signalling kinases, Akt and MAPKs, and increased uptake of DENSPM. In conclusion, the results suggest that DENSPM can favour apoptosis in chondrocytes independently of its effects on polyamine metabolism and levels. J. Cell. Physiol. 219: 109–116, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

7.
Subcellular distribution of spermidine/spermine N1-acetyltransferase   总被引:1,自引:0,他引:1  
The subcellular distribution of the polyamine catabolic enzyme spermidine/spermine N(1)-acetyltransferase (SSAT) was studied in L56Br-C1 cells treated with 10 microM N(1),N(11)-diethylnorspermine (DENSPM) for 24 h. Cells were fractioned into three subcellular fractions. A particulate fraction containing the mitochondria was denoted as the mitochondrial fraction. After DENSPM treatment, an increase in SSAT activity was mainly found in the mitochondrial fraction. Western blot analysis showed an increased level of the SSAT protein in the mitochondrial fraction compared to the cytosolic fraction. Immunofluorescence microscopy and immunogold labeling transmission electron microscopy also showed a mitochondrial association of SSAT. Transmission electron microscopy revealed that the endoplasmic reticulum was devoid of ribosomes in DENSPM-treated cells, in contrast to control cells that contained ample ribosomes. An increased SSAT activity in connection with the mitochondria may be part of the mechanism of DENSPM-induced apoptosis.  相似文献   

8.
We have generated mouse embryonic stem cells with targeted disruption of spermidine/spermine N(1)-acetyltransferase (SSAT) gene. The targeted cells did not contain any inducible SSAT activity, and the SSAT protein was not present. The SSAT-deficient cells proliferated normally and appeared to maintain otherwise similar polyamine pools as did the wild-type cells, with the possible exception of constantly elevated (about 30%) cellular spermidine. As expected, the mutated cells were significantly more resistant toward the growth-inhibitory action of polyamine analogues, such as N(1),N(11)-diethylnorspermine. However, this resistance was not directly attributable to cellular depletion of the higher polyamines spermidine and spermine, as the analogue depleted the polyamine pools almost equally effectively in both wild-type and SSAT-deficient cells. Tracer experiments with [C(14)]-labeled spermidine revealed that SSAT activity is essential for the back-conversion of spermidine to putrescine as radioactive N(1)-acetylspermidine and putrescine were readily detectable in N(1),N(11)-diethylnorspermine-exposed wild-type cells but not in SSAT-deficient cells. Similar experiments with [C(14)]spermine indicated that the latter polyamine was converted to spermidine in both cell lines and, unexpectedly, more effectively in the targeted cells than in the parental cells. This back-conversion was only partly inhibited by MDL72527, an inhibitor of polyamine oxidase. These results indicated that SSAT does not play a major role in the maintenance of polyamine homeostasis, and the toxicity exerted by polyamine analogues is largely not based on SSAT-induced depletion of the natural polyamines. Moreover, embryonic stem cells appear to operate an SSAT-independent system for the back-conversion of spermine to spermidine.  相似文献   

9.
The retinoblastoma protein (pRb) pathway is frequently altered in breast cancer cells. pRb is involved in the regulation of cell proliferation and cell death. The breast cancer cell line L56Br-C1 does not express pRb and is extremely sensitive to treatment with the polyamine analogue N 1,N 11-diethylnorspermine (DENSPM) which causes apoptosis. Polyamines are essential for the regulation of cell proliferation, cell differentiation and cell death. DENSPM depletes cells of polyamines, e.g., by inducing the activity of the polyamine catabolic enzyme spermidine/spermine N 1-acetyltransferase (SSAT). In this study, L56Br-C1 cells were transfected with human pRb–cDNA. Overexpression of pRb inhibited DENSPM-induced cell death and DENSPM-induced SSAT activity. This suggests that the pRb protein level is a promising marker for polyamine depletion sensitivity and that there is a connection between pRb and the regulation of SSAT activity. We also show that SSAT protein levels and SSAT activity do not always correlate, suggesting that there is an unknown regulation of SSAT.  相似文献   

10.
Insulin-like growth factor-I (IGF-I) and the polyamine catabolic enzyme spermidine/spermine N(1)-acetyltransferase (SSAT) are progesterone-regulated genes with maximal expression at peri-implantation in the porcine uterine endometrium. However, while IGF-I stimulates cell proliferation, SSAT, by acetylating the naturally occurring polyamines (PA) spermine (SPM) and spermidine (SPD), typically functions as a cell growth inhibitor. The present study examined the functional relationships of IGF-I, SSAT, and PA in the control of endometrial cell proliferation. Northern blot analysis indicated that SSAT mRNA levels change with distinct pregnancy stages, in contrast to those for the PA biosynthetic enzyme ornithine decarboxylase (ODC). Primary cultures of luminal and glandular epithelial (LE, GE) and stromal (ST) cells isolated from Day 12 pregnant pig endometrium had IGF-I mRNA levels for ST > LE > GE cells. The mRNA levels for SSAT and ODC were transiently diminished by IGF-I treatment, but only in GE cells. By contrast, SPM and SPD increased SSAT mRNA levels in GE and ST cells, but increased ODC mRNA levels only in GE cells. IGF-I, putrescine (PUT), and SPM individually increased cellular DNA synthesis as measured by tritiated thymidine incorporation in GE and ST cells, while SPD had an effect only in ST cells. IGF-I enhanced the proliferative effect of each PA in GE cells, but only of SPD in ST cells. The mitogen-activated protein kinase inhibitor, PD98059, inhibited the induction by SPM of GE cell DNA synthesis but not that of IGF-I. Wortmannin, a phosphatidylinositol-3-kinase inhibitor had no effect on either IGF-I or SPM induction of GE cell DNA synthesis. The relative concentrations of SPM, SPD, and PUT in uterine luminal fluids differed, with the levels for each PA higher at pregnancy Day 12 than at 11.5. These results suggest that IGF-I and PA act through distinct signaling pathways to mediate cell-type-specific growth of early pregnancy pig uterine endometrium. Further, SSAT, through its control of intracellular PA levels, likely plays a modulatory role in the establishment of an optimal uterine environment for successful embryo attachment.  相似文献   

11.
12.
The spermine analogue N(1),N(11)-diethylnorspermine (DENSPM) efficiently depletes the polyamine pools in the breast cancer cell line L56Br-C1 and induces apoptotic cell death via the mitochondrial pathway. In this study, we have over-expressed the anti-apoptotic protein Bcl-2 in L56Br-C1 cells and investigated the effect of DENSPM treatment. DENSPM-induced cell death was significantly reduced in Bcl-2 over-expressing cells. Bcl-2 over-expression reduced DENSPM-induced release of the pro-apoptotic proteins AIF, cytochrome c, and Smac/DIABLO from the mitochondria. Bcl-2 over-expression reduced the DENSPM-induced activation of caspase-3. Bcl-2 over-expression also prevented DENSPM-induced Bax cleavage and reduction of Bcl-X(L) and survivin levels. The DENSPM-induced activation of the polyamine catabolic enzyme spermidine/spermine N(1)-acetyltransferase was reduced by Bcl-2 over-expression, partly preventing polyamine depletion. Thus, Bcl-2 over-expression prevented a number of DENSPM-induced apoptotic effects.  相似文献   

13.
The N1-acetylation of spermidine and spermine by spermidine/spermine acetyltransferase (SSAT) is a crucial step in the regulation of the cellular polyamine levels in eukaryotic cells. Altered polyamine levels are associated with a variety of cancers as well as other diseases, and key enzymes in the polyamine pathway, including SSAT, are being explored as potential therapeutic drug targets. We have expressed and purified human SSAT in Escherichia coli and characterized its kinetic and chemical mechanism. Initial velocity and inhibition studies support a random sequential mechanism for the enzyme. The bisubstrate analogue, N1-spermine-acetyl-coenzyme A, exhibited linear, competitive inhibition against both substrates with a true Ki of 6 nM. The pH-activity profile was bell-shaped, depending on the ionization state of two groups exhibiting apparent pKa values of 7.27 and 8.87. The three-dimensional crystal structure of SSAT with bound bisubstrate inhibitor was determined at 2.3 A resolution. The structure of the SSAT-spermine-acetyl-coenzyme A complex suggested that Tyr140 acts as general acid and Glu92, through one or more water molecules, acts as the general base during catalysis. On the basis of kinetic properties, pH dependence, and structural information, we propose an acid/base-assisted reaction catalyzed by SSAT, involving a ternary complex.  相似文献   

14.
Depletion of intracellular polyamine pools invariably inhibits cell growth. Although this is usually accomplished by inhibiting polyamine biosynthesis, we reasoned that this might be more effectively achieved by activation of polyamine catabolism at the level of spermidine/spermine N(1)-acetyltransferase (SSAT); a strategy first validated in MCF-7 breast carcinoma cells. We now examine the possibility that, due to unique aspects of polyamine homeostasis in the prostate gland, tumor cells derived from it may be particularly sensitive to activated polyamine catabolism. Thus, SSAT was conditionally overexpressed in LNCaP prostate carcinoma cells via a tetracycline-regulatable (Tet-off) system. Tetracycline removal resulted in a rapid approximately 10-fold increase in SSAT mRNA and an increase of approximately 20-fold in enzyme activity. SSAT products N(1)-acetylspermidine, N(1)-acetylspermine, and N(1),N(12)-diacetylspermine accumulated intracellularly and extracellularly. SSAT induction also led to a growth inhibition that was not accompanied by polyamine pool depletion as it was in MCF-7 cells. Rather, intracellular spermidine and spermine pools were maintained at or above control levels by a robust compensatory increase in ornithine decarboxylase and S-adenosylmethionine decarboxylase activities. This, in turn, gave rise to a high rate of metabolic flux through both the biosynthetic and catabolic arms of polyamine metabolism. Treatment with the biosynthesis inhibitor alpha-difluoromethylornithine during tetracycline removal interrupted flux and prevented growth inhibition. Thus, flux-induced growth inhibition appears to derive from overaccumulation of metabolic products and/or from depletion of metabolic precursors. Metabolic effects that were not excluded as possible contributing factors include high levels of putrescine and acetylated polyamines, a 50% reduction in S-adenosylmethionine, and a 45% decline in the SSAT cofactor acetyl-CoA. Overall, the study demonstrates that activation of polyamine catabolism in LNCaP cells elicits a compensatory increase in polyamine biosynthesis and downstream metabolic events that culminate in growth inhibition.  相似文献   

15.
16.
Spermidine acetyltransferase (SAT) from Escherichia coli, which catalyses the transfer of acetyl groups from acetyl-CoA to spermidine, is a key enzyme in controlling polyamine levels in prokaryotic cells. In this study, we determined the crystal structure of SAT in complex with spermidine (SPD) and CoA at 2.5 Å resolution. SAT is a dodecamer organized as a hexamer of dimers. The secondary structural element and folding topology of the SAT dimer resemble those of spermidine/spermine N1-acetyltransferase (SSAT), suggesting an evolutionary link between SAT and SSAT. However, the polyamine specificity of SAT is distinct from that of SSAT and is promiscuous. The SPD molecule is also located at the inter-dimer interface. The distance between SPD and CoA molecules is 13 Å. A deep, highly acidic, water-filled cavity encompasses the SPD and CoA binding sites. Structure-based mutagenesis and in-vitro assays identified SPD-bound residues, and the acidic residues lining the walls of the cavity are mostly essential for enzymatic activities. Based on mutagenesis and structural data, we propose an acetylation mechanism underlying promiscuous polyamine recognition for SAT.  相似文献   

17.
Acetylation of polyamines by spermidine/spermine N(1)-acetyltransferase (SSAT) has been implicated in their degradation and/or export out of the cell. The relationship of SSAT to polyamine pool dynamics and cell growth is not yet clearly understood. MCF-7 human breast carcinoma cells were transfected with tetracycline-regulated (Tet-off) SSAT human cDNA or murine gene. Doxycycline removal for >2 days caused a approximately 20-fold increase in SSAT RNA and a approximately 10-fold increase in enzyme activity. After 4 days, intracellular putrescine and spermidine pools were markedly lowered, and cell growth was inhibited. Growth inhibition could not be prevented with exogenous polyamines due to a previously unrecognized ability of SSAT to rapidly acetylate influxing polyamines and thereby prevent restoration of the endogenous pools. Instead, cells accumulated high levels of N(1)-acetylspermidine, N(1)-acetylspermine, and N(1), N(12)-diacetylspermine, a metabolite not previously reported in mammalian cells. Doxycycline deprivation before treatment with N(1), N(11)-diethylnorspermine markedly increased analog induction of SSAT mRNA and activity and enhanced growth sensitivity to the analog by approximately 100-fold. Overall, the findings demonstrate that conditional overexpression of SSAT lowers polyamine pools, inhibits cell growth, and markedly enhances growth sensitivity to certain analogs. The enzyme also plays a remarkably efficient role in maintaining polyamine pool homeostasis during challenges with exogenous polyamines.  相似文献   

18.
Depletion of pancreatic intracellular polyamine pools has been observed in acute pancreatitis both in the animal models and in humans. In this study, the wild-type mice, polyamine catabolic enzyme spermidine/spermine N(1)-acetyltransferase overexpressing (SSAT mice) and SSAT-deficient mice were used to characterize the new zinc-induced acute pancreatitis mouse model and study the role of polyamines and polyamine catabolism in this model. Intraperitoneal zinc injection induced acute necrotizing pancreatitis in wild-type mice as well as in SSAT-overexpressing and SSAT-deficient mice. Serum α-amylase activity was significantly increased in all zinc-treated mice compared with the untreated controls. However, the α-amylase activities in SSAT mice were constantly lower than those in the other groups. Histopathological examination of pancreatic tissue revealed edema, acinar cell necrosis and necrotizing inflammation, typical for acute pancreatitis. Compared with the other zinc-treated mice less damage according to the histopathological analysis was observed in the pancreatic tissue of SSAT mice. Levels of intracellular spermidine, and occasionally spermine, were significantly decreased in pancreases of all zinc-treated animals and SSAT enzyme activity was enhanced both in wild-type and SSAT mice. Interestingly, a spermine analog, N(1), N(11)-diethylnorspermine (DENSpm), enhanced the proliferation of pancreatic cells and reduced the severity of zinc-induced pancreatitis in wild-type mice. The results show that in mice a single intraperitoneal zinc injection causes acute necrotizing pancreatitis accompanied by decrease of intracellular polyamine pools. The study supports the important role of polyamines for the integrity and function of the pancreas. In addition, the study suggests that whole body overexpression of SSAT obtained in SSAT mice reduces inflammatory pancreatic cell injury.  相似文献   

19.
20.
Properties of a mutant form of spermidine/spermine N(1)-acetyltransferase, L156F (L156F-SSAT), that is present in Chinese hamster ovary cells selected for resistance to the polyamine analogue N(1,) N(11)-bis(ethyl)norspermine (BE 3-3-3) were investigated. Increased K(m) values, decreased V(max) values, and decreased k(cat) values with both polyamine substrates, spermidine and spermine, indicated that L156F-SSAT is an inferior and less efficient acetyltransferase than wild-type SSAT. Transfection of L156F-SSAT into C55.7Res cells indicated that cellular SSAT activity per nanogram of SSAT protein correlated well with the in vitro data and was also approximately 20-fold less for the mutant protein than for wild-type SSAT. Increased expression of L156F-SSAT was unable to restore cellular sensitivity to BE 3-3-3 despite providing measurable basal SSAT activity. Only a 4-fold induction of L156F-SSAT activity resulted from the exposure of cells to the polyamine analogue, whereas wild-type SSAT was induced approximately 300-fold. Degradation studies indicated that BE 3-3-3 cannot prevent ubiquitination of L156F-SSAT and is therefore unable to protect the mutant protein from degradation. These studies indicate that the decreased cellular sensitivity to BE 3-3-3 is caused by the lack of SSAT activity induction in the presence of the analogue due to its inability to prevent the rapid degradation of the L156F-SSAT protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号