首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Calcium channel activation in vascular smooth muscle by BAY K 8644   总被引:8,自引:0,他引:8  
BAY K 8644 (methyl-1,4-dihydro-2,6-dimethyl-3-nitro-4-(2-trifluoromethylphenyl) pyridine-5-carboxylate) and CGP 28 392 (ethyl-4(2-difluoromethoxyphenyl)-1,4,5,7-tetrahydro-2-methyl-5-++ +oxofuro- [3,4-b]pyridine-3-carboxylate) are closely related in structure to nifedipine and other 1,4-dihydropyridine Ca2+ channel antagonists. However, both BAY K 8644 and CGP 28 392 serve as activators of Ca2+ channels. In the rat tail artery, responses to BAY K 8644 are dependent upon Ca2+ext and prior stimulation by K+ or by the alpha-adrenoceptor agonists, phenylephrine and BHT 920 (6-allyl-2-amino-5,6,7,8,-tetrahydro-4H-thiazolo[4,5-d]azepin dihydrochloride). Responses are blocked noncompetitively by the Ca2+ channel antagonists D-600 [-)-D-600 greater than (+)-D-600) and diltiazem, but competitively by nifedipine (pA2 = 8.27). This suggests that activator and inhibitor 1,4-dihydropyridines interact at the same site. BAY K 8644 potentiates K+ responses and Ca2+ responses in K+-depolarizing media. The leftward shift of the K+ dose--response curve produced by BAY K 8644 suggests that this ligand facilitates the voltage-dependent activation of the Ca2+ channel. The pA2 value for nifedipine antagonism of BAY K 8644 responses is significantly lower than that for nifedipine antagonism of Ca2+ responses in K+ (25-80 mM) depolarizing media (9.4-9.6), suggesting that the state of the channel may differ according to the activating stimulus.  相似文献   

3.
A general mechanism for the physiological regulation of the activity of voltage-dependent Na+, Ca++, K+, and Cl channels by neurotransmitters in a variety of excitable cell types may involve a final common pathway of a cyclic AMP-dependent phosphorylation of the channel protein. The functional correlates of channel phosphorylation are known to involve a change in the probability of opening, and a negative or positive shift in the voltage dependence for activation of the conductance. The voltage dependence for activation appears to be governed by the properties of the charge movement of the voltage-sensing moiety of the channel. This study of the gating charge movement of cardiac Ca++ channels has revealed that isoproterenol or cAMP (via a presumed phosphorylation of the channel) speeds the kinetics of the Ca++ channel gating charge movement. These results suggest that the changes in the kinetics and voltage dependence of the cardiac calcium currents produced by beta-adrenergic stimulation are initiated, in part, by parallel changes in the gating charge movement.  相似文献   

4.
Endothelin and Ca++ agonist Bay K 8644: different vasoconstrictive properties   总被引:12,自引:0,他引:12  
The mechanism of vasoconstriction induced by endothelin was investigated in rat isolated aorta in comparison with the Ca++ agonist, Bay K 8644. Endothelin (EC50 = 4 nM) induced a slow and sustained contraction in control medium whereas the one elicited by Bay K 8644 (EC50 = 14 nM) necessitating a partly K+ depolarized medium was fast with superimposed rhythmic contraction. By opposition with Bay K 8644, endothelin contraction was not inhibited by the calcium antagonists (1 microM), nifedipine, diltiazem and D 600, and substantially persisted in Ca++ free medium or after depletion of intracellular Ca++ by phenylephrine (1 microM). These data show that endothelin does not act as an activator of potential dependent Ca++ channels but probably through specific receptor(s) as suggested by its mode of vasoconstriction.  相似文献   

5.
We studied the effects of the dihydropyridine derivative BAY K 8644 on the membrane potential of B-cells in mouse pancreatic islets. BAY K 8644, in a dose-dependent manner, decreased the spike frequency but increased the duration of the spikes elicited by glucose with or without quinine or tetraethylammonium (TEA). These effects were antagonized by cobalt and nifedipine but not by tetrodotoxin. The interval between spikes was proportionate to the duration of the spikes and the ratio of the interval to the spike duration was constant at all concentrations of BAY K 8644 tested. Peak inward current, estimated from the derivative of the action potential recorded in the presence of TEA, was increased by BAY K 8644 and decreased by nifedipine. BAY K 8644 elicited spike activity when the membrane was moderately depolarized by either 5.6 mM glucose or 15 mM K+, but did not change the membrane potential of the resting hyperpolarized B-cell. These results suggest that BAY K 8644 acts on the open Ca2+-channels. The threshold occurs at a membrane potential of -50 mV. Also, the modifications of the shape of the spikes appear to reflect specific changes in Ca2+ entry. We propose the existence of a Ca2+-induced Ca2+-channel inactivation process in the pancreatic B-cell.  相似文献   

6.
7.
8.
Voltage-dependent Ca++-activated K+ channels from rat skeletal muscle were reconstituted into planar lipid bilayers, and the kinetics of block of single channels by Ba++ were studied. The Ba++ association rate varies linearly with the probability of the channel being open, while the dissociation rate follows a rectangular hyperbolic relationship with open-state probability. Ba ions can be occluded within the channel by closing the channel with a strongly hyperpolarizing voltage applied during a Ba++-blocked interval. Occluded Ba ions cannot dissociate from the blocking site until after the channel opens. The ability of the closed channel to occlude Ba++ is used as an assay to study the channel's gating equilibrium in the blocked state. The blocked channel opens and closes in a voltage-dependent process similar to that of the unblocked channel. The presence of a Ba ion destabilizes the closed state of the blocked channel, however, by 1.5 kcal/mol. The results confirm that Ba ions block this channel by binding in the K+-conduction pathway. They further show that the blocking site is inaccessible to Ba++ from both the cytoplasmic and external solutions when the channel is closed.  相似文献   

9.
We examined the late transitions in the activation sequence of potassium channels by analyzing gating currents of mutant Shaker IR channels and using the potassium channel blocker 4-aminopyridine (4AP). Gating currents were recorded from a double mutant of Shaker that was nonconducting (W434F mutation) and had the late gating transitions shifted to the right on the voltage axis (L382C mutation), thus separating the late transitions from the early ones. 4AP applied to the double mutant blocked the final transition and made possible novel observations of the isolated intermediate transitions, the ones that immediately precede the final opening of the channel. These transitions, which have not been well characterized previously, produce a distinct fast component in the gating current tails. Two intermediate transitions contribute to the fast component and carry 23% of the total gating charge. The effect of 4AP is well modeled as a selective block of the final gating transition, which opens the channel. The final transition contributes approximately 5% of the total gating charge.  相似文献   

10.
Ca channel gating during cardiac action potentials.   总被引:2,自引:2,他引:2       下载免费PDF全文
How do Ca channels conduct Ca ions during the cardiac action potential? We attempt to answer this question by applying a two-microelectrode technique, previously used for Na and K currents, in which we record the patch current and the action potential at the same time (Mazzanti, M., and L. J. DeFelice. 1987. Biophys. J. 12:95-100, and 1988. Biophys. J. 54:1139-1148; Wellis, D., L. J. DeFelice, and M. Mazzanti. 1990. Biophys. J. 57:41-48). In this paper, we also compare the action currents obtained by the technique with the step-protocol currents obtained during standard voltage-clamp experiments. Individual Ca channels were measured in 10 mM Ca/1 Ba and 10 mM Ba. To describe part of our results, we use the nomenclature introduced by Hess, P., J. B. Lansman, and R. W. Tsien (1984. Nature (Lond.). 311:538-544). With Ba as the charge carrier, Ca channel kinetics convert rapidly from long to short open times as the patch voltage changes from 20 to -20 mV. This voltage-dependent conversion occurs during action potentials and in step-protocol experiments. With Ca as the charge carrier, the currents are brief at all voltages, and it is difficult to define either the number of channels in the patch or the conductance of the individual channels. Occasionally, however, Ca-conducting channels spontaneously convert to long-open-time kinetics (in Hess et al., 1984, notation, mode 2).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Hemodynamic studies were performed to determine if blunting of vascular pressor responsiveness to vasoconstrictors during pregnancy may be due to impaired L-type voltage-dependent calcium channels (L-VDCC). Bay K 8644 (BAY), an L-VDCC agonist, was infused in pregnant and nonpregnant anesthetized rabbits (10, 20, 40, and 60 microg/kg) and pregnant and nonpregnant conscious, chronically instrumented (conscious) rabbits (10, 25, and 50 microg/kg). BAY infusions resulted in greater elevation of mean arterial pressure in both anesthetized pregnant (n = 6) vs. nonpregnant (n = 6) (P < 0.05) and conscious pregnant (n = 10) vs. nonpregnant (n = 10) rabbits (P < 0.05). Fractional increase over baseline of total peripheral resistance index was greater in pregnant (36 +/- 5 to 78 +/- 14%) vs. nonpregnant rabbits (14 +/- 4 to 52 +/- 6%) (P < 0.02). Cardiac output index did not differ. There was a single high-affinity L-VDCC antagonist aortic binding site with similar number and affinity in pregnant (n = 7) and nonpregnant (n = 7) rabbits. In conclusion, stimulation of L-VDCC induces greater pressor responses in pregnant rabbits with heightened peripheral vasoconstriction. This does not appear to be due to a change in L-VDCC receptor parameters.  相似文献   

12.
1. Modulation of Ca channels by the dihydropyridine Ca agonist Bay K 8644 in guinea-pig taenia coli smooth muscle cells was investigated using the patch clamp technique. 2. Single Ca channel activity was obtained from cell-attached patch recordings with the use of pipettes filled with 50 mM Ba. Bath application of the drug markedly increased the opening probability of Ca channels. 3. The effect was found to be due to an increase in the mean opening times of Ca channels. Due to this increase, the mean current reconstructed by averaging individual current trace responses was markedly increased in the presence of Bay K 8644.  相似文献   

13.
We have investigated the voltage-dependent effects of the dihydropyridine Bay K8644 on Ca channel currents in calf Purkinje fibers and enzymatically dispersed rat ventricular myocytes. Bay K8644 increases the apparent rate of inactivation of these currents, measured during depolarizing voltage pulses, and shifts both channel activation and inactivation in the hyperpolarizing direction. Consequently, currents measured after hyperpolarizing conditioning pulses are larger in the presence of drug compared with control conditions, but are smaller than control if they are measured after positive conditioning pulses. Most of our experimental observations on macroscopic currents can be explained by a single drug-induced change in one rate constant of a simple kinetic model. The rate constant change is consistent with results obtained by others with single channel recordings.  相似文献   

14.
The purpose of this investigation was to examine the effects of the Ca2+ agonist BAY K 8644 and the Ca2+ antagonist nifedipine on halothane- and caffeine-induced twitch potentiation of mammalian skeletal muscle. Muscle fiber bundles were taken from normal Landrace pigs and exposed to BAY K 8644 (10 microM), nifedipine (1 microM), and low Ca2+ media administered alone and in combination with halothane (3%) or with increasing concentrations of caffeine (0.5-8.0 mM). Both BAY K 8644 and halothane potentiated twitches by approximately 80%; when they were administered in combination, twitch potentiation was nearly double that caused by either drug alone. In the presence of nifedipine, halothane increased twitches by less than 30%. Low Ca2+ significantly depressed twitches by approximately 25% but also inhibited halothane's inotropic effect. BAY K 8644 augmented caffeine potentiation but only at low caffeine concentrations (0.5-2.0 mM). Nifedipine and low Ca2+ failed to inhibit caffeine's inotropic effects. These results suggest that halothane potentiates twitches via a mechanism that involves or is influenced by extracellular Ca2+.  相似文献   

15.
To investigate the mechanisms that increase ionic currents when Ca(2+) channels' alpha(1) subunits are co-expressed with the beta-subunits, we compared channel activity of Ca(V)1.2 (alpha(1C)) co-expressed with beta(1a) and beta(2a) in Xenopus oocytes. Normalized by charge movement, ionic currents were near threefold larger with beta(2a) than with beta(1a). At the single-channel level, the open probability (P(o)) was over threefold larger with beta(2a), and traces with high P(o) were more frequent. Among traces with P(o) > 0.1, the mean duration of burst of openings (MBD) were nearly twice as long for alpha(1C)beta(2a) (15.1 +/- 0.7 ms) than for alpha(1C)beta(1a) (8.4 +/- 0.5 ms). Contribution of endogenous beta(3xo) was ruled out by comparing MBDs with alpha(1C)-cRNA alone (4.7 +/- 0.1 ms) with beta(3xo) (14.3 +/- 1.1 ms), and with beta(1b) (8.2 +/- 0.5 ms). Open-channel current amplitude distributions were indistinguishable for alpha(1C)beta(1a) and alpha(1C)beta(2a), indicating that opening and closing kinetics are similar with both subunits. Simulations with constant opening and closing rates reproduced the microscopic kinetics accurately, and therefore we conclude that the conformational change-limiting MBD is differentially regulated by the beta-subunits and contributes to the larger ionic currents associated with beta(2a), whereas closing and opening rates do not change, which should reflect the activity of a separate gate.  相似文献   

16.
Calcium and BAY K 8644 acutely stimulate calcitonin secretion by influx of extracellular calcium (Ca) through voltage-dependent calcium channels, leading to an increase in cytosolic free Ca. Repetitive exposure to BAY K 8644 (10(-6) M) resulted in an increase in calcitonin (CT) secretion in the rat C-cell line (rMTC 6-23) lasting 9 hours, in comparison to that of 3 mM Ca2+ which lasted 6 hours. Equimolar concentration of nifedipine did not inhibit the stimulatory effect of BAY K 8644 as compared to the nifedipine only group. The decrease in stimulated CT secretion during long-term exposure to BAY K 8644 is due to desensitization of cells which may be attributed to down-regulation of dihydropyridine receptors. After 12 h exposures to 3 mM Ca2+ alone, BAY K 8644 (10(-6) M) alone or in combination with nifedipine (10(-6) M), CT content decreased below the control level, indicating a decrease in synthesis. Overall cellular protein content was not affected by the test agents. Repetitive exposure of C-cells to BAY K 8644 revealed a desensitization of the stimulatory effect on CT secretion and a decrease in CT cell content.  相似文献   

17.
P Lory  G Varadi    A Schwartz 《Biophysical journal》1992,63(5):1421-1424
The skeletal muscle (SKM) L-type Ca2+ channel is composed of a central subunit designated alpha 1, which contains the pore and the dihydropyridine (DHP) binding domains and three associated subunits, alpha 2/delta, beta, and gamma, which influence the activity of the SKM alpha 1. Coexpression of SKM alpha 1 and SKM beta in stably transfected mouse L cells results in a dramatic increase in DHP binding accompanied by fast gated Ba2+ currents. We report here that this "SKM alpha 1 beta-related phenotype" can be converted upon intracellular trypsin treatment into a slowly inactivating, DHP sensitive "SKM alpha 1 phenotype." These observations indicate that current amplitude, fast inactivation, and DHP sensitivity are modulated by an interaction of SKM alpha 1 and SKM beta on the internal side of the membrane.  相似文献   

18.
Effects of a novel slow channel activator, Bay K-8644 (Bay K), were studied on slow action potential (APs) in young and old embryonic chick hearts, and on its antagonism of the effects of diacetyl monoxime (DAM). The slow APs of young hearts are mediated by slow Na+ channels, whereas those of old hearts are mediated by slow Ca2+ channels. In slow APs of old (13-18 days old) embryonic chick hearts superfused with a high (22 mM) K+ solution, Bay K (10-6 M) gradually increased the amplitude, maximum rate of rise (Vmax), and duration of the slow APs. The actions of Bay K persisted for a long time (greater than 30 min) after washout of the drug. DAM (10 mM) depressed the Vmax, duration and amplitude of the slow APs. Some of the changes in slow AP parameters produced by DAM, e.g., Vmax decrease, were antagonized by the addition of Bay K (10(-6) M). In 3-day-old embryonic chick hearts. Bay K potentiated the slow APs and DAM depressed them; Bay K antagonized these effects of DAM. Thus, the actions of Bay K and DAM are likely to be produced, respectively, via the activation and depression of slow Ca2+ channels in old embryonic chick hearts. In addition, the drugs seem to influence slow Na+ channels found in young embryonic chick hearts.  相似文献   

19.
To further understand the molecular mechanism by which 1,25(OH)2-vitamin D3 [1,25(OH2D3] rapidly stimulates intestinal calcium transport (termed "transcaltachia"), the effect of the calcium channel agonist BAY K8644 was studied in vascularly perfused duodenal loops from normal, vitamin D-replete chicks. BAY K8644, 2 mu M, was found to stimulate 45Ca2+ transport from the lumen to the vascular effluent to the same extent as physiological levels of 1,25(OH)2D3. The sterol and the Ca2+ channel agonist both increased 45Ca2+ transport 70% above control values within 2 min and 200% after 30 min of vascular perfusion. The effect of the Ca2+ channel agonist was dose dependent. Also, 1,25(OH)2D3-enhanced transcaltachia was abolished by the calcium channel blocker nifedipine. Collectively, these results suggest the involvement of 1,25(OH)2D3 in the activation of basal lateral membrane Ca2+ channels as an early effect in the transcaltachic response.  相似文献   

20.
Several lines of evidence suggest that nonspecific drug interaction with the lipid bilayer plays an important role in subsequent recognition and binding to specific receptor sites in the membrane. The interaction of Bay K 8644, a 1,4-dihydropyridine (DHP) calcium channel agonist, with model and biological membranes was examined at the molecular level using small angle x-ray diffraction. Nonspecific drug partitioning into the membrane was examined by radiochemical assay. Nonspecific binding characteristics of [3H] Bay K 8644 were determined in both dipalmitoyl phosphatidylcholine (DPPC) vesicles above and below their thermal phase transition (Tm) and rabbit skeletal muscle light sarcoplasmic reticulum (LSR). In DPPC, the partition coefficient, Kp, was 14,000 above the Tm (55 degrees C) versus 160 in the gel phase (2 degrees C). The Kp determined in LSR membranes was 10,700. These values for both DPPC and LSR membranes can be compared with Kp = 290 in the traditional octanol/buffer system. Using small-angle x-ray diffraction, the equilibrium position of the electron-dense trifluoromethyl group of Bay K 8644 in DPPC (above Tm) and purified cardiac sarcolemmal (CSL) lipid bilayers was determined to be consistently located within the region of the first few methylene segments of the fatty acyl chains of these membranes. This position is similar to that observed for the DHP calcium channel antagonists nimodipine and Bay P 8857. We suggest this particular membrane location defines a region of local drug concentration and plane for lateral diffusion to a common receptor site. Below the DPPC membrane Tm, Bay K 8644 was shown to be excluded from this energetically favored position into the interbilayer water space. Heating the DPPC bilayer above the Tm (55 degrees C) showed that this exclusion was reversible and indicates that drug-membrane interaction is dependent on the bilayer physical state. The absence of any specific protein binding sites in these systems allows us to ascertain the potentially important role that the bulk lipid phase may play in the molecular mechanism of DHP binding to the specific receptor site associated with the calcium channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号