首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Heat shock proteins (Hsps) are ubiquitous proteins that are induced following exposure to sublethal heat shock, are highly conserved during evolution, and protect cells from damage through their function as molecular chaperones. Some cancers demonstrate elevated levels of Hsp70, and their expression has been associated with cell proliferation, disease prognosis, and resistance to chemotherapy. In this study, we developed a tetracycline-regulated gene expression system to determine the specific effects of inducible Hsp70 on cell growth and protection against hyperthermia in MCF-7 breast cancer cells. MCF-7 cells expressing high levels of Hsp70 demonstrated a significantly faster doubling time (39 hours) compared with nonoverexpressing control cells (54 hours). The effect of elevated Hsp70 on cell proliferation was characterized further by 5-bromo-2'deoxyuridine labeling, which demonstrated a higher number of second and third division metaphases in cells at 42 and 69 hours, respectively. Estimates based on cell cycle analysis and mean doubling time indicated that Hsp70 may be exerting its growth-stimulating effect on MCF-7 cells primarily by shortening of the G0/G1 and S phases of the cell cycle. In addition to the effects on cell growth, we found that elevated levels of Hsp70 were sufficient to confer a significant level of protection against heat in MCF-7 cells. The results of this study support existing evidence linking Hsp70 expression with cell growth and cytoprotection in human cancer cells.  相似文献   

4.
Estrogen (E2) plays a critical role in the etiology and progression of human breast cancer. The estrogenic response is complex and not completely understood, including in terms of the involved responsive genes. Here we show that Hsp22 (synonyms: HspB8, E2lG1, H11), a member of the small heat shock protein (sHSP) superfamily, was induced by E2 in estrogen receptor-positive MCF-7 breast cancer cells, resulting in an elevated Hsp22 protein level, whereas it was not induced in estrogen receptor-negative MDA-MB-231 cells. This induction was prevented by the pure anti-estrogen ICI182780 (faslodex, fulvestrant), whereas tamoxifen, a substance with mixed estrogenic and antiestrogenic properties, had no major inhibitory effect on this induction, nor did it induce Hsp22 on its own. Cadmium (Cd) is an environmental pollutant with estrogenic properties (metalloestrogen) that has been implicated in breast cancer. Treatment of MCF-7 cells with Cd also resulted in induction of Hsp22, and this induction was also inhibited by ICI182780. In live MCF-7 cells, Hsp22 interacted at the level of dimers with Hsp27, a related sHSP, as was shown by quantitative fluorescence resonance energy transfer measurements. In cytosolic extracts of MCF-7 cells, most of the E2- and Cd-induced Hsp22 was incorporated into high-molecular mass complexes. In part, Hsp22 and Hsp27 were components of distinct populations of these complexes. Finally, candidate elements in the Hsp22 promoter were identified by sequence analysis that could account for the induction of Hsp22 by E2 and Cd. Taken together, Hsp22 induction represents a new aspect of the estrogenic response with potential significance for the biology of estrogen receptor-positive breast cancer cells.  相似文献   

5.
6.
Hsp90 interacts with proteins that mediate signaling pathways involved in the regulation of essential processes such as proliferation, cell cycle control, angiogenesis and apoptosis. Hsp90 inhibition is therefore an attractive strategy for blocking abnormal pathways that are crucial for cancer cell growth. In the present study, the role of Hsp90 in human breast cancer MCF-7 cells was examined by stably silencing Hsp90 gene expression with an Hsp90-silencing vector (Hsp90-shRNA). RT-PCR and Western blot analyses showed that Hsp90-shRNA specifically and markedly down-regulated Hsp90 mRNA and protein expression. NF-kB and Akt protein levels were down-regulated in Hsp90-shRNA transfected cells, indicating that Hsp90 knockout caused a reduction of survival factors and induced apoptosis. Treatment with Hsp90-shRNA significantly increased apoptotic cell death and caused cell cycle arrest in the G1/S phase in MCF-7 cells, as shown by flow cytometry. Silencing of Hsp90 also reduced cell viability, as determined by MTT assay. In vivo experiments showed that MCF-7 cells stably transfected with Hsp90-shRNA grew slowly in nude mice as compared with control groups. In summary, the Hsp90-shRNA specifically silenced the Hsp90 gene, and inhibited MCF-7 cell growth in vitro and in vivo. Possible molecular mechanisms underlying the effects of Hsp90-shRNA include the degradation of Hsp90 breast cancer-related client proteins, the inhibition of survival signals and the upregulation of apoptotic pathways. shRNA-mediated interference may have potential therapeutic utility in human breast cancer.  相似文献   

7.
8.
9.
Hsp90/p50cdc37 is required for mixed-lineage kinase (MLK) 3 signaling   总被引:3,自引:0,他引:3  
Mixed-lineage kinase 3 (MLK3) is a mitogen-activated protein kinase (MAPK) kinase kinase that activates MAPK pathways, including the c-Jun NH(2)-terminal kinase (JNK) and p38 pathways. MLK3 and its family members have been implicated in JNK-mediated apoptosis. A survey of human cell lines revealed high levels of MLK3 in breast cancer cells. To learn more about MLK3 regulation and its signaling pathways in breast cancer cells, we engineered the estrogen-responsive human breast cancer cell line, MCF-7, to stably, inducibly express FLAG epitope-tagged MLK3. FLAG.MLK3 complexes were isolated by affinity purification, and associated proteins were identified by in-gel trypsin digestion followed by liquid chromatography/tandem mass spectrometry. Among the proteins identified were heat shock protein 90alpha,beta (Hsp90) and its kinase-specific co-chaperone p50(cdc37). We show that endogenous MLK3 complexes with Hsp90 and p50(cdc37). Further experiments demonstrate that MLK3 associates with Hsp90/p50(cdc37) through its catalytic domain in an activity-independent manner. Upon treatment of MCF-7 cells with geldanamycin, an ansamycin antibiotic that inhibits Hsp90 function, MLK3 levels decrease dramatically. Furthermore, tumor necrosis factor alpha-induced activation of MLK3 and JNK in MCF-7 cells is blocked by geldanamycin treatment. Our finding that geldanamycin treatment does not affect the cellular levels of the downstream signaling components, MAPK kinase 4, MAPK kinase 7, and JNK, suggests that Hsp90/p50(cdc37) regulates JNK signaling at the MAPK kinase kinase level. Previously identified Hsp90/p50(cdc37) clients include oncoprotein kinases and protein kinases that promote cellular proliferation and survival. Our findings reveal that Hsp90/p50(cdc37) also regulates protein kinases involved in apoptotic signaling.  相似文献   

10.
11.
12.
In the presented study, we have analysed effects of the environmental estrogens bisphenol A (BPA), p-tert-octylphenol (OCT), o,p'-DDT (DDT) and coumestrol (COU) on cell proliferation, apoptosis induction, progesterone receptor (PR) and androgen receptor (AR) mRNA expression and ER alpha protein expression in comparison to estradiol (E2) and the selective ER modulator (SERM) raloxifene (RAL) and the pure antiestrogen faslodex (ICI 182780) in the human breast cancer cell line MCF-7. A dose dependent analysis of the cell cycle distribution of MCF-7 cells after administration of OCT, DDT and COU revealed a significant induction of cell proliferation and reduced rate of apoptosis. Maximum induction of cell proliferation and the lowest rate of apoptosis could be observed at a dose of 10(-6)M. Interestingly, administration of BPA reduces the rate of apoptosis, but does not enhance proliferation at any dose analysed. PR mRNA expression in MCF-7 cells was up regulated after administration of COU and DDT, whereas treatment with BPA and OCT did not effect PR mRNA expression. AR mRNA expression was down regulated by COU, but not effected by BPA, DDT and OCT. The expression of ER alpha protein in the breast cancer cells was slightly down regulated by COU and DDT, but unaffected by BPA and OCT. In summary and in comparison to the effects observed after administration of E2, RAL and ICI our data indicate that none of the analysed compounds exhibit properties comparable to RAL and ICI. COU and DDT exhibit properties which are very similar to E2. Administration of BPA and OCT did not effect any of the estrogen sensitive molecular parameters analysed. Nevertheless OCT is a very potent stimulator of cell proliferation in MCF-7 cells. Surprisingly, BPA is not able to induce the proliferation of MCF-7 breast cancer cells, but turns out to be a very potent inhibitor of apoptosis. For this reason and in agreement to the effects of BPA on the molecular parameters analysed, we conclude that BPA does not act in a classical estrogen like manner in MCF-7 breast cancer cells.  相似文献   

13.
14.
15.
16.
The unactivated steroid receptors are chaperoned into a conformation that is optimal for binding hormone by a number of heat shock proteins, including Hsp90, Hsp70, Hsp40, and the immunophilin, FKBP52 (Hsp56). Together with its partner cochaperones, cyclophilin 40 (CyP40) and FKBP51, FKBP52 belongs to a distinct group of structurally related immunophilins that modulate steroid receptor function through their association with Hsp90. Due to the structural similarity between the component immunophilins, FKBP52 and cyclophilin 40, we decided to investigate whether CyP40 is also a heat shock protein. Exposure of MCF-7 breast cancer cells to elevated temperatures (42 degrees C for 3 hours) resulted in a 75-fold increase in CyP40 mRNA levels, but no corresponding increase in CyP40 protein expression, even after 7 hours of heat stress. The use of cycloheximide to inhibit protein synthesis revealed that in comparison to MCF-7 cells cultured at 37 degrees C, those exposed to heat stress (42 degrees C for 3 hours) displayed an elevated rate of degradation of both CyP40 and FKBP52 proteins. Concomitantly, the half-life of the CyP40 protein was reduced from more than 24 hours to just over 8 hours following heat shock. As no alteration in CyP40 protein levels occurred in cells exposed to heat shock, an elevated rate of degradation would imply that CyP40 protein was synthesized at an increased rate, hence the designation of human CyP40 as a heat shock protein. Application of heat stress elicited a marked redistribution of CyP40 protein in MCF-7 cells from a predominantly nucleolar localization, with some nuclear and cytoplasmic staining, to a pattern characterized by a pronounced nuclear accumulation of CyP40, with no distinguishable nucleolar staining. This increase in nuclear CyP40 possibly resulted from a redistribution of cytoplasmic and nucleolar CyP40, as no net increase in CyP40 expression levels occurred in response to stress. Exposure of MCF-7 cells to actinomycin D for 4 hours resulted in the translocation of the nucleolar marker protein, B23, from the nucleolus, with only a small reduction in nucleolar CyP40 levels. Under normal growth conditions, MCF-7 cells exhibited an apparent colocalization of CyP40 and FKBP52 within the nucleolus.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号