首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present studies were carried out with the aims to determine the cDNA sequence for cyclooxygenase (COX) in an elasmobranch species and to study its role in regulation of chloride secretion in the perfused shark rectal gland (SRG). With the use of long primers (43 bp) derived from regions of homology between zebrafish and rainbow trout COX-2 genes, a 600-bp product was amplified from SRG and was found to be almost equally homologous to mammalian COX-1 and COX-2 (65%). The full-length cDNA sequence was obtained by 5'-RACE and by analyzing an EST clone generated by the EST Project of the Mt. Desert Island Biological Laboratory Marine DNA Sequencing Center. The longest open reading frame encodes a 593-amino acid protein that has 68 and 64% homology to mammalian COX-1 and COX-2, respectively. The gene and its protein product is designated as shark COX (sCOX). The key residues in the active site (Try(385), His(388), and Ser(530)) are conserved between the shark and mammalian COX. sCOX contains Val(523) that has been shown to be a key residue determining the sensitivity to COX-2-specific inhibitors including NS-398. The mRNA of sCOX, detected by RT-PCR, was found in all tissues tested, including rectal gland, kidney, spleen, gill, liver, brain, and heart, but not in fin. In the perfused SRG, vasoactive intestinal peptide (VIP) at 5 nM induced rapid and marked Cl(-) secretion (basal: <250 microeq x h(-1) x g(-1); peak response: 3,108 +/- 479 microeq x h(-1) x g(-1)). In the presence of 50 microM NS-398, both the peak response (2,131 +/- 307 microeq x h(-1) x g(-1)) and the sustained response to VIP were significantly reduced. When NS-398 was removed, there was a prompt recovery of chloride secretion to control values. In conclusion, we have cloned the first COX in an elasmobranch species (sCOX) and shown that sCOX inhibition suppresses VIP-stimulated chloride secretion in the perfused SRG.  相似文献   

2.
The vertebrate choroid plexus removes potentially toxic metabolites and xenobiotics from cerebrospinal fluid (CSF) to blood for subsequent excretion in urine and bile. We used confocal microscopy and quantitative image analysis to characterize the mechanisms driving transport of the large organic anion, fluorescein-methotrexate (FL-MTX), from bath (CSF-side) to blood vessels in intact lateral choroid plexus from dogfish shark, Squalus acanthias, an evolutionarily ancient vertebrate. With 2 microM FL-MTX in the bath, steady-state fluorescence in the subepithelium/vascular space exceeded bath levels by 5- to 10-fold, and fluorescence in the epithelial cells was slightly below bath levels. FL-MTX accumulation in both tissue compartments was reduced by NaCN, Na removal, and ouabain, but not by a 10-fold increase in medium K. Certain organic anions, e.g., probenecid, MTX, and taurocholate, reduced FL-MTX accumulation in both tissue compartments; p-aminohippurate and estrone sulfate reduced subepithelial/vascular accumulation, but not cellular accumulation. At low concentrations, digoxin, leukotriene C4, and MK-571 reduced fluorescence in the subepithelium/vascular space while increasing cellular fluorescence, indicating preferential inhibition of efflux over uptake. In the presence of 10 microM digoxin (reduced efflux, enhanced cellular accumulation), cellular FL-MTX accumulation was specific, concentrative, and Na dependent. Thus transepithelial FL-MTX transport involved the following two carrier-mediated steps: electroneutral, Na-dependent uptake at the apical membrane and electroneutral efflux at the basolateral membrane. Finally, FL-MTX accumulation in both tissue compartments was reduced by phorbol ester and increased by forskolin, indicating antagonistic modulation by protein kinase C and protein kinase A.  相似文献   

3.
Previous studies have demonstrated that the ventral aorta of the dogfish shark, Squalus acanthias, responds to a variety of cell-signaling agents. To investigate the generality of vasoactive receptors in the shark vasculature, in particular a conductance artery (anterior mesenteric) and vein (posterior intestinal), I measured the effect of acetylcholine, endothelin, nitric oxide, natriuretic peptides, and prostaglandins on tension in isolated rings from these vessels. Both vessels responded to these agents, and responses to receptor-specific ligands for endothelin and natriuretic peptide receptors suggest that B-type endothelin receptors are expressed in both vessels and that the artery expresses both A- and B-type natriuretic peptide receptors; however, the vein (like the ventral aorta) expresses only the B-type natriuretic peptide receptor. My data suggest that a suite of signaling systems is ubiquitous in both arteries and veins in at least this elasmobranch species. Their role in hemodynamics and osmoregulation (perfusion of gill and rectal gland) remains to be determined.  相似文献   

4.
Urea not only is utilized as a major osmolyte in marine elasmobranchs but also constitutes their main nitrogenous waste. This study investigated the effect of feeding, and thus elevated nitrogen intake, on nitrogen metabolism in the Pacific spiny dogfish Squalus acanthias. We determined the activities of ornithine urea cycle (O-UC) and related enzymes in liver and nonhepatic tissues. Carbamoyl phosphate synthetase III (the rate-limiting enzyme of the O-UC) activity in muscle is high compared with liver, and the activities in both tissues increased after feeding. The contribution of muscle to urea synthesis in the dogfish body appears to be much larger than that of liver when body mass is considered. Furthermore, enhanced activities of the O-UC and related enzymes (glutamine synthetase, ornithine transcarbamoylase, arginase) were seen after feeding in both liver and muscle and were accompanied by delayed increases in plasma urea, trimethylamine oxide, total free amino acids, alanine, and chloride concentrations, as well as in total osmolality. The O-UC and related enzymes also occurred in the intestine but showed little change after feeding. Feeding did not change the rate of urea excretion, indicating strong N retention after feeding. Ammonia excretion, which constituted only a small percentage of total N excretion, was raised in fed fish, while plasma ammonia did not change, suggesting that excess ammonia in plasma is quickly ushered into synthesis of urea or protein. In conclusion, we suggest that N conservation is a high priority in this elasmobranch and that feeding promotes ureogenesis and growth. Furthermore, exogenous nitrogen from food is converted into urea not only by the liver but also by the muscle and to a small extent by the intestine.  相似文献   

5.
6.
The spiny dogfish (Squalus acanthias) is a temperate, coastal squaloid shark with an antitropical distribution in the Atlantic and Pacific oceans. The global population structure of this species is poorly understood, although individuals are known to undergo extensive migrations within coastal waters and across ocean basins. In this study, an analysis of the global population structure of the spiny dogfish was conducted using eight polymorphic nuclear microsatellite markers and a 566‐bp fragment of the mitochondrial ND2 gene region. A low level of genetic divergence was found among collections from the Atlantic and South Pacific basins, whereas a high level of genetic divergence was found among Pacific Ocean collections. Two genetically distinct groups were recovered by both marker classes: one exclusive to North Pacific collections, and one including collections from the South Pacific and Atlantic locations. The strong genetic break across the equatorial Pacific coincides with major regional differences in the life‐history characters of spiny dogfish, suggesting that spiny dogfish in areas on either side of the Pacific equator have been evolving independently for a considerable time. Phylogeographic analyses indicate that spiny dogfish populations had a Pacific origin, and that the North Atlantic was colonized as a result of a recent range expansion from the South American coast. Finally, the available data strongly argue for the taxonomic separation of the North Pacific spiny dogfish from S. acanthias and a re‐evaluation of the specific status of S. acanthias is warranted.  相似文献   

7.
Cartilaginous fish, primarily sharks, rays and skates (elasmobranchs), appeared 450 million years ago. They are the most primitive vertebrates, exhibiting jaws and teeth, adaptive immunity, a pressurized circulatory system, thymus, spleen, and a liver comparable to that of humans. The most used elasmobranch in biomedical research is the spiny dogfish shark, Squalus acanthias. Comparative genomic analysis of the dogfish shark, the little skate (Leucoraja erincea), and other elasmobranchs have yielded insights into conserved functional domains of genes associated with human liver function, multidrug resistance, cystic fibrosis, and other biomedically relevant processes. While genomic information from these animals is informative in an evolutionary framework, experimental verification of functions of genomic sequences depends heavily on cell culture approaches. We have derived the first multipassage, continuously proliferating cell line of a cartilaginous fish. The line was initiated from embryos of the spiny dogfish shark. The cells were maintained in a medium modified for fish species and supplemented with cell type-specific hormones, other proteins and sera, and plated on a collagen substrate. SAE cells have been cultured continuously for three years. These cells can be transfected by plasmids and have been cryopreserved. Expressed Sequence Tags generated from a normalized SAE cDNA library included a number of markers for cartilage and muscle, as well as proteins influencing tissue differentiation and development, suggesting that SAE cells may be of mesenchymal stem cell origin. Examination of SAE EST sequences also revealed a cartilaginous fish-specific repetitive sequence that may be evidence of an ancient mobile genetic element that most likely was introduced into the cartilaginous fish lineage after divergence from the lineage leading to teleosts.  相似文献   

8.
9.
Using various agonists, and the specific antagonist BQ-123, we have examined the sensitivity to endothelin of the vascular smooth muscle of the ventral aorta of the spiny dogfish shark, Squalus acanthias. Human endothelin-1 produced significant contraction of isolated vascular smooth muscle rings, with an EC50 of 10 nmol·1-1. The presence of an intact endothelium did not alter this response but the magnitude of the contraction was greater in rings with an intact endothelium. The response to 0.2 mol·1-1 endothelin-1 was equivalent to that of 0.1 mmol·1-1 acetylcholine, and significantly greater than that to 80 mmol·1-1 KCl, suggesting high sensitivity even to the heterologous, mammalian peptide. The Hill plot of the contractile response was a straight line with a slope of 1.12, indicating that a single receptor was mediating the response. Endothelin-1, endothelin-3, and sarafotoxin S6c produced similar concentration-response curves, and the response to endothelin-1 was insensitive to the ETA-specific inhibitor BQ-123. Our data are consistent with the hypothesis that the receptor involved in the contractile response to endothelin of shark aortic vascular smooth muscle is of the ETB-rather than the ETA-type.Abbreviations ACh acetylcholine - ANP atrial natriuretic peptide - CA celiacomesenterie artery - CRC concentration response curve - DMSO dimethylsulphoxide - ET endothelin - STX sarafotoxin - VSM vascular smooth muscle - EDCF endothelium derived contraction factor  相似文献   

10.
The first two steps of urea synthesis in liver of marine elasmobranchs involve formation of glutamine from ammonia and of carbamoyl phosphate from glutamine, catalysed by glutamine synthetase and carbamoyl-phosphate synthetase, respectively [Anderson & Casey (1984) J. Biol. Chem. 259, 456-462]; both of these enzymes are localized exclusively in the mitochondrial matrix. The objective of this study was to establish the enzymology of carbamoyl phosphate formation and utilization for pyrimidine nucleotide biosynthesis in Squalus acanthias (spiny dogfish), a representative elasmobranch. Aspartate carbamoyltransferase could not be detected in liver of dogfish. Spleen extracts, however, had glutamine-dependent carbamoyl-phosphate synthetase, aspartate carbamoyltransferase, dihydro-orotase, and glutamine synthetase activities, all localized in the cytosol; dihydro-orotate dehydrogenase, orotate phosphoribosyltransferase, and orotidine-5'-decarboxylase activities were also present. Except for glutamine synthetase, the levels of all activities were very low. The carbamoyl-phosphate synthetase activity is inhibited by UTP and is activated by 5-phosphoribosyl 1-pyrophosphate. The first three enzyme activities of the pyrimidine pathway were eluted in distinctly different positions during gel filtration chromatography under a number of different conditions; although complete proteolysis of inter-domain regions of a multifunctional complex during extraction cannot be excluded, the evidence suggests that in dogfish, in contrast to mammalian species, these three enzymes of the pyrimidine pathway exist as individual polypeptide chains. These results: (1) establish that dogfish express two different glutamine-dependent carbamoyl-phosphate synthetase activities, (2) confirm the report [Smith, Ritter & Campbell (1987) J. Biol. Chem. 262, 198-202] that dogfish express two different glutamine synthetases, and (3) provide indirect evidence that glutamine may not be available in liver for biosynthetic reactions other than urea formation.  相似文献   

11.
12.
Isolated, endothelium-free rings of vascular smooth muscle (VSM) from the ventral aorta of the dogfish shark, Squalus acanthias, were used to examine the vasoactive effects of various adenosine agonists. Cumulative addition of 2-chloroadenosine (2 Cl-ADO) over the concentration range 10 nM-1 mM resulted in a biphasic response, with a significant increase in tension at 1 microM and a more significant decline in tension at 100 microM and 1 mM, suggesting that this tissue may possess both A1 and A2 adenosine receptors. N6-Cyclopentyladenosine (N-6 CPA) and N6-(2-phenylisopropyl)adenosine, R(-)isomer (R-PIA), generally considered to be more A1 specific, also produced slight, but significant increases in tension, but only at relatively high concentrations. The more specific A1 agonist, N6-(25)-[2-endo-norbonyl] adenosine [(S)-ENBA] produced a significant increase in tension at 1 pM, reaching 28% above control at 10 nM. The response to (S)-ENBA was also biphasic, with a fall in tension at 10 microM. The relatively non-specific agonist 5'-N-ethylcarboxamidoadenosine (NECA) produced a small, but significant, increase in tension at 1 microM, with no subsequent decline in tension at higher concentrations. These results allow us to assign a tentative structure-activity relationship (SAR) for an increase in tension of (S)-ENBA much much greater than R-PIA greater than or equal to 2-Cl ADO = N-6 CPA = NECA; for the decrease, the SAR is (S)-ENBA greater than 2-Cl ADO greater than R-PIA greater than N-6 CPA = NECA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Dogfish shark (Squalus acanthias) rectal gland cells swell massively when incubated in elasmobranch media in which Na+ was equivalently replaced by K+; this swelling was abolished when the impermeant gluconate replaced Cl-, while the cell depolarization was comparable in both media. The K+-effect was associated with (a) an increase of the steady-state 42K (and 86Rb) efflux (particularly of the rate constant of the fast cellular efflux component) and a rearrangement of the respective cellular pools of K+; (b) an alteration of cell morphology and the pattern of the F-actin staining along the basolateral cell membrane as revealed with fluorescent analogs of phallacidin. These changes were independent of cell volume, being identical in KCl and K-gluconate media. The observations were specific for K+ (and Rb+): replacement of media Na+ by Li+ (which is not actively extruded by the cells), or the presence of ouabain, produced only minor swelling without affecting cell morphology and F-acting distribution. The results are consistent with the following view: as opposed to Na+ or Li+ media, the K+-induced changes of the cortical F-actin component of the cytoskeleton permit the observed massive cell swelling due to the osmotic contribution of intracellular impermeant anion(s).  相似文献   

14.
In Pacific spiny dogfish (Squalus acanthias), plasma CO(2) reactions have access to plasma carbonic anhydrase (CA) and gill membrane-associated CA. The objectives of this study were to characterise the gill membrane-bound CA and investigate whether extracellular CA contributes significantly to CO(2) excretion in dogfish. A subcellular fraction containing membrane-associated CA activity was isolated from dogfish gills and incubated with phosphatidylinositol-specific phospholipase C. This treatment caused significant release of CA activity from its membrane association, a result consistent with identification of the dogfish gill membrane-bound CA as a type IV isozyme. Inhibition constants (K(i)) against acetazolamide and benzolamide were 4.2 and 3.5 nmol L(-1), respectively. Use of a low dose (1.3 mg kg(-1) or 13 micromol L(-1)) of benzolamide to selectively inhibit extracellular CA in vivo caused a significant 30%-60% reduction in the arterial-venous total CO(2) concentration difference, a significant increase in Pco(2) and an acidosis, without affecting blood flow or ventilation. No effect of benzolamide on any measure of CO(2) excretion was detected in rainbow trout (Oncorhynchus mykiss). These results indicate that extracellular CA contributes substantially to CO(2) excretion in the dogfish, an elasmobranch, and confirm that CA is not available to plasma CO(2) reactions in rainbow trout, a teleost.  相似文献   

15.
Endocrine cells containing gastrin/cholecystokinin (CCK)-like immunoreactivity were localized to the islet tissue in the pancreas of the spiny dogfish. Most of these cells were located in the 'intestinal' lobe of the pancreas; only occasional cells were observed in the 'splenic' lobe. The gastrin/CCK-like immunoreactive cells were often co-localized with the 'classical' pancreas hormones (insulin, glucagon and somatostatin). Radioimmunoassay of water extracts with a C-terminally directed antiserum revealed high levels of immunoreactive material in the intestinal part (48.6 +/- 19.9 pmol/g) and lower levels (4.5 +/- 0.6 pmol/g) in the splenic part. Acetic acid extracts of the intestinal lobe contained low levels (6.8 +/- 3.3 pmol/g) of gastrin/CCK-like immunoreactivity, whereas corresponding extracts of the splenic part showed no immunoreactivity. When the extracts were subjected to DEAE ion-exchange chromatography the gastrin/CCK-like peptides eluted as a major peak. After Sephadex gel filtration, pooled immunoreactive material from the main DEAE chromatographic peak eluted at a position close to that of CCK4. Further characterization by ion-exchange and reversed-phase HPLC showed that, in general, the immunoreactive material behaved like the shorter forms of the gastrin/CCK family (CCK4/G5 and CCK8/Cae 3-10).  相似文献   

16.
By means of the appropriate isotopes injected into the spiny dogfish, Squalus acanthias, the transfer of all major ions into cerebrospinal fluid (CSF), aqueous humor (A) and endolymph (E) was studied. In addition, the effect of raising pCO2 in sea-water upon HCO3- concentration of these fluids was measured. In the several types of experiments, acetazolamide or methazolamide was used to inhibit completely carbonic anhydrase. The rates of fluid formation and ion transfer in CSF and A were fairly close, but those for E were far slower. The general pattern of ion transport in the three fluids were the same, Na+ (or Na+ + K+ in E) entry greater than Cl - entry, and the difference was HCO3-. The greater rate constants for HCO3-, increase in its entry rate by elevation of pCO2, and inhibition of its appearance by the sulfonamides, show that this is a special case of transport; the ion is formed in secretory cells from gaseous CO2 + OH-. Secretory cells at sites of formation of all the fluids contain both carbonic anhydrase and Na+-K+-ATP-ase, which subserve HCO3- formation and Na+ (or K+) transport. Comparison of these results with studies in mammals show that the vertebrate pattern for secretion of these three fluids is well established in the elasmobranch.  相似文献   

17.
1. The main bilirubin conjugate in bile of spiny dogfish (Squalus Acanthias) and small skate (Raja Erinacea) is bilirubin monoglucuronide. 2. Microsomal preparations from dogfish and small skate liver have similar bilirubin UDPglucuronyltransferase (UDPGT) activity and catalyze the conjugation of bilirubin with glucose from UDPglucose. 3. The activity of bilirubin glucosidation (UDPGT) was 0.5 times UDPG1T activity in dogfish and 0.15 times in skate liver microsomes. 4. Sodium cholate increased UDPGT and UDPG1T activities in dogfish and skate liver microsomal preparations only minimally, but the detergent markedly increased thermolability of UDPGT in skate liver microsomes.  相似文献   

18.
Tissue from the digitiform rectal gland of the spiny dogfish, Squalus acanthias, was fixed briefly by formaldehyde perfusion and studied for the specificity and localization of p-nitrophenyl phosphatase (NPP'ase) activity. The enzymatic activity was K+-dependent (56%) and ouabain-sensitive (67%-inhibition). The electron-dense reaction product (SrPO4) of the cytochemical reaction (Ernst, 1972b) was localized along the inner surfaces of the basolateral membranes of the secretory cells. It was absent from mitochondria nuclei, vesicles, and other organelles. The luminal surface of the secretory cells was slightly reactive. On the basis of (1) this pattern of localization for the sodium transport system, (2) the presence of extensive intercellular labyrinthine channels (Bulger, 1963) that would facilitate "standing gradients" (Diamond and Bossert, 1968), and (3) the specific distribution of the energy-providing mitochondria, we conclude that the concentration and electrochemical gradients recorded from the secreting gland (Hayslett et al., 1974) are maintained across the domains of the basolateral surfaces of the secretory cells.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号