首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have tested the different edible oil effects on the blood pressure (BP) control and the following glomerular protection. Six groups of 12-week-old male spontaneously hypertensive rats (SHR) (n = 5), have received different edible oils (fish, canola, palm, olive, and soybean) or a placebo by gavage for 13 weeks. Renal cortex was analyzed through light microscopy and stereology. Usual BP increase, glomerulosclerosis, glomerular enlargement, and glomeruli loss in SHR has been prevented (fish, canola and palm oils) or attenuated (olive and soybean oils) by these oil long-term administration. The most favorable effect has been seen in the fish oil administration (source of n-3 polyunsaturated fatty acids, PUFA, eicosapentaenoic and docosahexaenoic acids), followed by both canola and palm oils (source of n-3 PUFA plus n-9 monounsaturated, MUFA, and saturated fatty acid, respectively), and finally both olive and soybean oils (source of n-9 MUFA and n-6 PUFA, respectively).  相似文献   

2.
The objective of this study was to evaluate the impact of diets enriched with plant oils or seeds, high in polyunsaturated fatty acids (PUFA), on the fatty acid profile of sheep intramuscular and subcutaneous adipose tissue (SAT). Sixty-six lambs were blocked according to initial body weight and randomly assigned to six concentrate-based rations containing 60 g fat/kg dry matter from different sources: (1) Megalac (MG; ruminally protected saturated fat), (2) camelina oil (CO), (3) linseed oil (LO), (4) NaOH-treated camelina seed (CS), (5) NaOH-treated linseed (LS) or (6) CO protected from ruminal saturation by reaction with ethanolamine; camelina oil amides (CA). The animals were offered the experimental diets for 100 days, after which samples of m. longissimus dorsi and SAT were collected and the fatty acid profile determined by GLC. The data were analyzed using ANOVA with 'a priori' contrasts including camelina v. linseed, oil v. NaOH-treated seeds and CS v. CA. Average daily gain and total fatty acids in intramuscular adipose tissue were similar across treatments. The NaOH-treatment of seeds was more effective in enhancing cis-9, trans-11 conjugated linoleic acid (CLA) incorporation than the corresponding oil, but the latter resulted in a higher content of trans-11 18:1 in both muscle neutral and polar lipids (P < 0.01, P < 0.001, respectively). Inclusion of LS resulted in the highest PUFA:saturated fatty acid (SFA) ratio in total intramuscular fat (0.22). The NaOH-treatment of seeds resulted in a higher PUFA/SFA ratio (0.21 v. 0.18, P < 0.001) than oils and on average, linseed resulted in a higher PUFA/SFA ratio than camelina (P < 0.01). Lambs offered LS had the highest concentration of n-3 PUFA in the muscle, while those offered MG had the lowest (P < 0.001). This was reflected in the lowest (P < 0.001) n-6: n-3 PUFA ratio for LS-fed lambs (1.15) than any other treatment, which ranged from 2.14 to 1.72, and the control (5.28). The trends found in intramuscular fat were confirmed by the data for SAT. This study demonstrated the potential advantage from a human nutrition perspective of feeding NaOH-treated seeds rich in PUFA when compared to the corresponding oil. The use of camelina amides achieved a greater degree of protection of dietary PUFA, but decreased the incorporation of biohydrogenation intermediates such as cis-9, trans-11 CLA and trans-11 18:1 compared to NaOH-treated seeds.  相似文献   

3.
Recent research has implicated dietary fish oils in the reduction of eicosanoids formed from arachidonic acid and amelioration of chronic diseases such as coronary heart disease, atherosclerosis and inflammation. Feeding studies were conducted to determine if the efficacy of dietary n-3 polyunsaturated fatty acids (PUFA) from fish oils was influenced by the quantity of n-6 polyunsaturated fatty acids and the total level of fat in the diet. Groups of mice were fed diets composed of 5 and 20% total fat with varying proportions of linoleic acid as a source of n-6 PUFA. Menhaden oil as a source of n-3 PUFA was fed at two levels of n-6 at each level of total fat. Eicosanoid biosynthesis was stimulated and assayed in the mouse peritoneum using zymosan as an inflammatory stimulus. Production of LTE4 and PGE2 was enhanced by increasing n-6 PUFA in the diet at both levels of total fat. High dietary fat significantly suppressed leukotriene (LT) synthesis. Dietary menhaden oil reduced LTE4 and PGE2 synthesis at both levels of dietary n-6 in the low fat study. In animals on 20% dietary fat menhaden oil significantly reduced LT synthesis only at a relatively low dietary n-6 PUFA. On a high n-6 PUFA high fat diets, menhaden oil did not significant affect LTE4 synthesis in response to zymosan stimulation. The results suggest that the effectiveness of fish oils in reducing eicosanoids in response to specific stimulation is influenced by the level of n-6 and the total quantity of fat in the diet.  相似文献   

4.
The aim of this work was to characterise the lipid and fatty acid composition of chylomicron remnants enriched in n-3 or n-6 polyunsaturated fatty acids (PUFA) and to investigate their influence on the fatty acid profiles of the lipids of rat hepatocytes cultured in monolayers. Chylomicrons were prepared from the lymph collected from the thoracic duct of rats given an oral dose of fish or corn oil (high in n-3 and n-6 PUFA, respectively), and remnants were prepared in vitro from such chylomicrons using rat plasma containing lipoprotein lipase. The fatty acids predominating in the oils abounded also in their respective chylomicrons and remnants, especially in triacylglycerols. Chylomicrons as well as remnants contained small amounts of phospholipids and long-chain PUFA that were minor in, or absent from, the dietary oils, evidently provided by the intestinal epithelium. The incubation of hepatocytes for 6 h, with either n-3 or n-6 PUFA-rich remnants (0.25-0.75 mM triacylglycerol) resulted in a dose-dependent increase in the amount of triacylglycerols and phospholipids in the cells, which was not affected further by increasing the incubation time to 19 h. Whereas hepatocyte triacylglycerols mostly incorporated the PUFA predominating in each remnant type, the fatty acid profile of cell phospholipids was virtually unchanged. In addition, irrespective of whether they were enriched in n-3 or n-6 PUFA, remnants promoted a relative decrease in the amount of cholesteryl esters, a minor hepatocyte lipid class poor in PUFA. The results demonstrate that the hepatocyte fatty acid profile is modulated in a lipid-class specific way by the amount and type of dietary PUFA delivered to cells in chylomicron remnants.  相似文献   

5.
n-3 Polyunsaturated fatty acids (PUFA) are increasingly consumed as food additives and supplements; however, the side effects of these fatty acids, especially at high doses, remain unclear. We previously discovered a high fat n-3 PUFA diet made of fish/flaxseed oils promoted significant weight gain in C57BL/6 mice, relative to a control, without changes in food consumption. Therefore, here we tested the effects of feeding mice high fat (HF) and low fat (LF) n-3 PUFA diets, relative to a purified control diet (CD), on locomotor activity using metabolic cages. Relative to CD, the HF n-3 PUFA diet, but not the LF n-3 PUFA diet, dramatically reduced ambulatory, rearing, and running wheel activities. Furthermore, the HF n-3 PUFA diet lowered the respiratory exchange ratio. The data suggest mixed fish/flaxseed oil diets at high doses could exert some negative side effects and likely have limited therapeutic applications.  相似文献   

6.
《Free radical research》2013,47(8):854-863
Abstract

N-3 polyunsaturated fatty acids (n-3 PUFA) affect inflammatory processes. This study evaluated the effects of dietary supplementation with fish oil on hepatic ischemia-reperfusion (IR) injury in the rat. Parameters of liver injury (serum transaminases and histology) and oxidative stress (serum 8-isoprostanes and hepatic GSH and GSSG), were correlated with NF-κB DNA binding and FA composition and inflammatory cytokine release. N-3 PUFA supplementation significantly increased liver n-3 PUFA content and decreased n-6/n-3 PUFA ratios. IR significantly modified liver histology and enhanced serum transaminases, 8-isoprotanes and inflammatory cytokines, with net reduction in liver GSH levels and net increment in those of GSSG. Early increase (3 h) and late reduction (20 h) in NF-κB activity was induced. All IR-induced changes were normalized by n-3 PUFA supplementation. In conclusion, prevention of liver IR-injury was achieved by n-3 PUFA supplementation, with suppression of oxidative stress and recovery of pro-inflammatory cytokine homeostasis and NF-κB functionality lost during IR.  相似文献   

7.
This study describes the effect of substituting dietary linoleic acid (18:2 n-6) with α-linolenic acid (18:3 n-3) on sucrose-induced insulin resistance (IR). Wistar NIN male weanling rats were fed casein based diet containing 22 energy percent (en%) fat with ~6, 9 and 7 en% saturated fatty acids (SFA), monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA) respectively for 3 months. IR was induced by replacing starch (ST) with sucrose (SU). Blends of groundnut, palmolein, and linseed oil in different proportions furnished the following levels of 18:3 n-3 (g/100 g diet) and 18:2 n-6/18:3 n-3 ratios respectively: ST-220 (0.014, 220), SU-220 (0.014, 220), SU-50 (0.06, 50), SU-10 (0.27, 10) and SU-2 (1.1, 2). The results showed IR in the sucrose fed group (SU-220) as evidenced by increase in fasting plasma insulin and area under the curve (AUC) of insulin in response to oral glucose load. In SU-220, the increase in adipocyte plasma membrane cholesterol/phospholipid ratio was associated with a decrease in fluidity, insulin stimulated glucose transport, antilipolytic effect of insulin and increase in basal and norepinephrine stimulated lipolysis in adipocytes. In SU-50, sucrose induced alterations in adipocyte lipolysis and antilipolysis were normalized. However, in SU-2, partial corrections in plasma insulin, AUC of insulin and adipocyte insulin stimulated glucose transport were observed. Further, plasma triglycerides and cholesterol decreased in SU-2. In diaphragm phospholipids, the observed dose dependent increase in long chain (LC) n-3 PUFA was associated with a decrease in LC-n-6 PUFA but insulin stimulated glucose transport increased only in SU-2. Thus, this study shows that the substitution of one-third of dietary 18:2 n-6 with 18:3 n-3 (SU-2) results in lowered blood lipid levels and increases peripheral insulin sensitivity, possibly due to the resulting high LCn-3 PUFA levels in target tissues of insulin action. These findings suggest a role for 18:3 n-3 in the prevention of insulin resistant states. The current recommendation to increase 18:3 n-3 intake for reducing cardiovascular risk may also be beneficial for preventing IR in humans.  相似文献   

8.
Abstract: We have studied the effect of a dietary deprivation of n-3 fatty acids on the activity of the dopamine (DA)-de-pendent adenylate cyclase in the rat retina. Experiments were conducted in 6-month-old rats raised on semipurified diets containing either safflower oil (n-3 deficient diet) or soybean oil (control diet). The levels of docosahexaenoic acid [22:6 (n-3)] in retinal phospholipids were significantly decreased in n-3 deficient rats (35–42% of control levels). This was compensated by a rise in 22:5 (n-6), the total content of poly-unsaturated fatty acids (PUFA) remaining approximately constant. Adenylate cyclase activity was measured in retinal membrane preparations from dark-adapted or light-exposed rats. The enzyme activity was stimulated by DA and SKF 38393 in a light-dependent fashion. The activation was lower in rats exposed to light than in dark-adapted animals, suggesting a down-regulation of the DI DA receptors by light. The activation by guanine nucleotides and forskolin was also decreased in light-exposed rats. There was no significant effect of the dietary regimen on the various adenylate cyclase activities and their response to light. Furthermore, the guanine nucleotide- and DA-dependent adenylate cyclase activities of retinal membranes were found to be relatively resistant to changes in membrane fluidity induced in vitro by benzyl alcohol. The results indicate that in the absence of changes in total PUFA content, a decreased ratio of n-3 to n-6 fatty acids in membrane phospholipids does not significantly affect the properties of adenylate cyclase in the rat retina.  相似文献   

9.
The purpose of this investigation was to determine whether diets supplemented with oils from three different marine sources, all of which contain high proportions of long-chain n-3 polyunsaturated fatty acids (PUFA), result in qualitatively distinct lipid and fatty acid profiles in guinea pig heart. Albino guinea pigs (14 days old) were fed standard, nonpurified guinea pig diets (NP) or NP supplemented with menhaden fish oil (MO), harp seal oil (SLO) or porbeagle shark liver oil (PLO) (10%, w/w) for 4-5 weeks. An n-6 PUFA control group was fed NP supplemented with corn oil (CO). All animals appeared healthy, with weight gains marginally lower in animals fed the marine oils. Comparison of relative organ weights indicated that only the livers responded to the diets, and that they were heavier only in the marine-oil fed guinea pigs. Heart total cholesterol levels were unaffected by supplementing NP with any of the oils, whereas all increased the triacylglycerol (TAG) content. The fatty-acid profiles of totalphospholipid (TPL), TAG and free fatty acid (FFA) fractions of heart lipids showed that feeding n-3 PUFA significantly altered the proportions of specific fatty-acid classes. For example, all marine-oil-rich diets were associated with increases in total monounsaturated fatty acids in TPL (p < 0.05), and with decreases in total saturates in TAG (p < 0.05). Predictably, the n-3 PUFA enriched regimens significantly increased the cardiac content of n-3 PUFA and decreased that of n-6 PUFA, although the extent varied among the diets. As a result, n-6/n-3 ratios were significantly lower in all myocardial lipid classes of marine-oil-fed guinea pigs. Analyses of the profiles of individual PUFA indicated that quantitatively, the fatty acids of the three marine oils were metabolized and/or incorporated into TPL, TAG and FFA in a diet-specific manner. In animals fed MO-enriched diets in which eicosapentaenoic acid (EPA) > docosahexacnoic acid (DHA), ratios of DHA /EPA in the hearts were 1.2, 2.2 and 1.5 in TPL, TAG and FFA, respectively. In SLO-fed guinea pigs in which dietary EPA DHA, ratios of DHA/EPA were 0.9, 3.4 and 2.1 in TPL, TAG and FFA, respectively. Feeding NP + PLO (DHA/EPA = 4.8), resulted in values for DHA/EPA in cardiac tissue of 2.1, 10.6 and 2.9 in TPL, TAG and FFA, respectively. In the TAG and FFA, proportions of n-3 docosapentaenoic acid (n-3 DPA) were equal to or higher than EPA in the SLO- and PLO-fed animals. The latter group exhibited the greatest difference between the DHA/n-3 DPA ratio in the diet and in cardiac TAG and FFA fractions (7, 3.4 and 3.1, respectively). Quantitative analysis indicated that 85% of the n-3 PUFA were in TPL, 7-11% were in TAG, and 2-6% were FFA. Specific patterns of distribution of EPA, DPA and DHA depended on the dietary oil. Both the qualitative and quantitative results of this study demonstrated that in guinea pigs, n-3 PUFA in different marine oils are metabolized and/or incorporated into cardiac lipids in distinct manners. In support of the concept that the diet-induced alterations reflect changes specifically in cardiomyocytes, we observed that direct supplementation of cultured guinea pig myocytes for 2-3 weeks with EPA or DHA produced changes in the PUFA profiles of their TPL that were qualitatively similar to those observed in tissue from the dietary study. The factors that regulate specific deposition of n-3 PUFA from either dietary oils or individual PUFA are not yet known, however the differences that we observed could in some manner be related to cardiac function and thus their relative potentials as health-promoting dietary fats.  相似文献   

10.
Five isonitrogenous diets (approximately 33% crude protein) were fed to the brood female carp, Catla catla (weighing 3.0 to 5.5 kg), for a period of 93 days in order to observe their breeding performance in earthen ponds. Diet-I (control) contained only basic ingredients like rice bran, ground-nut oil cake, roasted soybean meal, fish meal and mineral mixture; diet-II contained added vitamins; diet-III contained added vitamins and vegetable oil (rich in n-6 polyunsaturated fatty acids, PUFA); diet-IV contained added vitamins and fish oil (rich in n-3 PUFA); and diet-V contained added vitamins and a mixture of vegetable and fish oils. The results showed that nutritional quality of the diet considerably influenced breeding performance in the species. The total number of matured females was the highest in the diet-V group and maturity was advanced by 35 days in this group compared to the control. In diet-III and diet-V groups, all the maturated females bred fully and the relative fecundity was increased significantly in diet III, IV and V. The maximum (73.4%) fertilisation rate was observed in the diet-V group, followed by 61.3%, 56.8%, 49% and 22.7% in diet-I, diet-IV, diet-III and diet-II groups respectively. Most of the eggs in the diet-II treatment group remained immature. The various data thus obtained suggest that dietary supplementation of both n-3 and n-6 PUFA, is essential to improve gonadal maturation, breeding performance and spawn recovery in the Catla female broodstock.  相似文献   

11.
Diets given for 30 days with various mono-(MUFA) and poly-(PUFA) unsaturated fatty acid contents were evaluated for brain protection in magnesium-deficient mice: a commercial and three synthetic diets (n-6PUFA, n-3PUFA and MUFA-based chows enriched with 5% corn/sunflower oils 1:3, with 5% rapeseed oil and with 5% high oleic acid sunflower oil/sunflower oil 7:3, respectively). Unlike magnesium deprivation, they induced significant differences in brain and erythrocyte membrane phospholipid fatty acid compositions. n-3PUFA but not other diets protected magnesium-deficient mice against hyperactivity and moderately towards maximal electroshock- and NMDA-induced seizures. This diet also inhibited audiogenic seizures by 50%, preventing animal deaths. Because, like n-6PUFA diet, matched control MUFA diet failed to induce brain protections, alpha-linolenate (ALA) rather than reduced n-6 PUFA diet content is concluded to cause n-3PUFA neuroprotection. Present in vivo data also corroborate literature in vitro inhibition of T type calcium channels by n-3 PUFA, adding basis to ALA supplementation in human anti-epileptic/neuroprotective strategies.  相似文献   

12.
The conversion of the plant-derived omega-3 (n-3) α-linolenic acid (ALA, 18:3n-3) to the long-chain eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) can be increased by ALA sufficient diets compared to ALA deficient diets. Diets containing ALA above an optimal level result in no further increase in DHA levels in animals and humans. The present study evaluates means of maximizing plasma DHA accumulation by systematically varying both linoleic acid (LA, 18:2n-6) and ALA dietary level. Weanling rats were fed one of 54 diets for three weeks. The diets varied in the percentage of energy (en%) of LA (0.07–17.1 en%) and ALA (0.02–12.1 en%) by manipulating both the fat content and the balance of vegetable oils. The peak of plasma phospholipid DHA (>8% total fatty acids) was attained as a result of feeding a narrow dietary range of 1–3 en% ALA and 1–2 en% LA but was suppressed to basal levels (~2% total fatty acids) at dietary intakes of total polyunsaturated fatty acids (PUFA) above 3 en%. We conclude it is possible to enhance the DHA status of rats fed diets containing ALA as the only source of n-3 fatty acids but only when the level of dietary PUFA is low (<3 en%).  相似文献   

13.
五种微绿球藻产油和产多不饱和脂肪酸的研究   总被引:1,自引:0,他引:1  
从5种微绿球藻中鉴别出4个高产油藻种和1个产油量很低的藻种。4种高产油微绿球藻在平台期油脂含量最高,占细胞干重的57%以上,其中三酰基甘油的含量占细胞干重的32.4%-45.2%。分析5种微绿球藻细胞的脂肪酸组成及4种高产油藻三酰基甘油中的脂肪酸组成,发现在高产油藻中,总的饱和脂肪酸和单不饱和脂肪酸的比例达到95%以上,多不饱和脂肪酸在5%以下,而在产油量很低的微绿球藻中多不饱和脂肪酸比例达45%以上。高产油微绿球藻三酰基甘油的多不饱和脂肪酸含量在4%以下,是生物柴油的优质原料,而产油量低的微绿球藻可用于提取C20:5脂肪酸(EPA)。    相似文献   

14.
Juvenile tench (initial weight of about 57 g) were fed feed supplemented with fish oil (group FO), linseed oil (group LO), peanut oil (group PO), or rapeseed oil (group RO) containing 47% protein and 12% fat for 55 days. The inclusion of the tested oils was 50 g kg−1 (42% total crude lipids in diets). No significant differences were noted in the fish growth performance. The proximate composition of the whole fish bodies and the viscera (water, protein, fat, ash) was similar in all the dietary treatments (P > 0.05). Differences were noted only with regard to the ash content of the fillets (P < 0.05). The analysis of the fatty acids profiles of tench (whole fish) indicated there were significant differences in the total content of monoenoic and polyenoic (PUFA) acids. Significant differences were also noted with regard to n-3 PUFA and n-6 PUFA. Consequently, the ratio of n-3/n-6 acids ranged from 1.6 (group PO) to 2.08 (group LO; P < 0.05). The feed applied was not confirmed to have had an impact on the fatty acids profile of the tench fillets. There was a statistically significant intergroup difference in the content of saturated fatty acids (SFA) in tench viscera. In the fish fed vegetable oils supplemented diets, the level of SFA was lower (P < 0.05).  相似文献   

15.
16.
研究不同ALA含量油脂对高脂模型大鼠组织脂肪酸代谢的影响.60只雄性Wistar大鼠分为正常组、高脂组、花生油组、13%、27%和55% ALA含量油脂组,除正常组和高脂组外,其余各组在饲喂高脂饲料的同时采用灌胃方式连续给予2 mL/kg.bw剂量的受试油.试验6周后分别测定大鼠各组织脂肪酸组成.结果表明,高脂饮食能够降低大鼠各组织n-3脂肪酸含量,但摄入不同ALA油脂可显著增加组织n-3脂肪酸含量,并具有一定的剂量效应关系;但ALA及其代谢产物EPA、DPA和DHA的累积具有组织特异性,其中肾和心组织中ALA累积高于血浆、脑及肝组织,肝和脑组织中EPA和DPA含量增加较显著,而肾和心组织中EPA含量不变,各组织DHA含量增加不显著.不同ALA油脂组C18:3(n-6)和C20:3 (n-6)差异不显著,但与花生油组相比,其血浆、脑和肾组织C20:4含量显著降低.因此,富含ALA含量的油脂能够增加组织中ALA及其代谢产物在组织中的含量,提高其在脑组织中的分布比例,这可能是ALA具有心血管保护作用和促进脑生长发育的作用机制之一.  相似文献   

17.
Requirements in polyunsaturated fatty acids (PUFA) of series n-3 and n-6 may be amplified and their metabolism, transport, and utilization may be impaired in the long term, by protein depletion. The aim of this study was to evaluate, in young rats, malondialdehyde (MDA) production and erythrocyte membrane antioxidative defense, when they were fed balanced (20% casein) or depleted (2% casein) protein diet associated with various oils (sunflower, soybean, coconut or salmon). Over a short period (28 days), eight groups of 10 male Wistar rats were fed eight different diets: TOC (20% casein + 5% sunflower oil), TOd (2% casein + 5% soybean oil), SOC (20% casein + 5% soybean oil), SOd (2% casein + 5% soybean oil), COC (20% casein + 5% coconut oil), COd (2% casein + 5% coconut oil), SAC (20% casein + 5% salmon oil), SAd (2% casein + 5% salmon oil). Blood was removed, MDA was assessed in plasma (reaction with thiobarbituric acid). Washed erythrocytes were subjected to organic free radical generator (Kit KGRL 400 Spiral R.D., Couternon, 21560 France). The haemoglobin released was analysed by spectrophotometry. The total anti-radical defense status was expressed as the length of time to reach 50% hemolysis (T 50% in min). Plasma of deficient groups (2% casein) exhibited low concentrations of protein, particularly with coconut and salmon oils; phospholipid and total cholesterol, excepted with diet containing coconut oil; triacylglycerol; and VLDL. Malondialdehyde. In groups fed balanced protein diets, the lowest values were obtained with salmon and coconut oils. MDA contents of groups TOd, COd and SAd were higher than those of their respective control groups, but significantly only in group COd. Antiradical defense status. Total anti-radical defence status in erythrocytes was not modified in the short term by balanced or depleted protein diets which ever oil was used, despite deep changes in fatty acid composition of membrane phospholipids. In particular, phospholipid contents in eicosapentaenoic, docosahexaenoic acids were greatly enhanced by the consumption of salmon oil compared to the values obtained with coconut oil.  相似文献   

18.
n-3 polyunsaturated fatty acids (n-3 PUFA) contribute to the normal growth and development of numerous organs in the piglet. The fatty acid composition of piglet tissues is linked to the fatty acid composition of sow milk and, consequently, to the composition of sow diet during the gestation and lactation period. In this study, we investigated the impact of different contents of extruded linseed in the sow diet on the fatty acid composition and desaturase gene expression of piglets. Sows received a diet containing either sunflower oil (low 18:3n-3 with 18:3n-3 representing 3% of total fatty acids) or a mixture of extruded linseed and sunflower oil (medium 18:3n-3 with 9% of 18:3n-3) or extruded linseed (high 18:3n-3 with 27% of 18:3n-3) during gestation and lactation. Fatty acid composition was evaluated on sow milk and on different piglet tissues at days 0, 7, 14, 21 and 28. The postnatal evolution of delta5 (D5D) and delta6 (D6D) desaturase mRNA expression was also measured in the liver of low 18:3n-3 and high 18:3n-3 piglets. The milk of high 18:3n-3 sows had higher proportions of n-3PUFA than that of low 18:3n-3 and medium 18:3n-3 sows. Piglets suckling the high 18:3n-3 sows had greater proportions of 18:3n-3, 20:5n-3, 22:5n-3 and 22:6n-3 in the liver, and of 22:5n-3 and 22:6n-3 in the brain than low 18:3n-3 and medium 18:3n-3 piglets. D5D and D6D mRNA expressions in piglet liver were not affected by the maternal diet at any age. In conclusion, extruded linseed in the sow diet modifies the n-3PUFA status of piglets during the postnatal period. However, a minimal content of 18:3n-3 in the sow diet is necessary to increase the n-3PUFA level in piglet liver and brain. Moreover, modifications in the n-3PUFA fatty acid composition of piglet tissue seem linked to the availability of 18:3n-3 in maternal milk and not to desaturase enzyme expression.  相似文献   

19.
A high-fat diet containing polyunsaturated fatty acids (PUFA: n-3 or n-6) given for 4 wk to 5-wk-old male Wistar rats induced a clear hyperglycemia (10.4 +/- 0.001 mmol/l for n-6 rats and 10.1 +/- 0.001 for n-3 rats) and hyperinsulinemia (6.6 +/- 0.8 ng/ml for n-6 rats and 6.4 +/- 1.3 for n-3 rats), signs of insulin resistance. In liver, both diets (n-3 and n-6) significantly reduced insulin receptor (IR) number, IR and IR substrate (IRS)-1 tyrosine phosphorylation, and phosphatidylinositol (PI) 3'-kinase activity. In contrast, in leg muscle, IR density, as determined by Western blotting, was not affected, whereas IR and IRS-1 tyrosine phosphorylation in response to insulin treatment was restored in animals fed with n-3 PUFA to normal; in n-6 PUFA, the phosphorylation was depressed, as evidenced by Western blot analysis using specific antibodies. In addition, PI 3'-kinase activity and GLUT-4 content in muscle were maintained at normal levels in rats fed with n-3 PUFA compared with rats fed a normal diet. In rats fed with n-6 PUFA, both PI 3'-kinase activity and GLUT-4 content were reduced. Furthermore, in adipose tissue and using RT-PCR, we show that both n-3 and n-6 PUFA led to slight or strong reductions in p85 expression, respectively, whereas GLUT-4 and leptin expression was depressed in n-6 rats. The expression was not affected in n-3 rats compared with control rats. In conclusion, a high-fat diet enriched in n-3 fatty acids maintained IR, IRS-1 tyrosine phosphorylation, and PI 3'-kinase activity and total GLUT-44 content in muscle but not in liver. A high-fat diet (n-3) partially altered the expression of p85 but not that of GLUT-4 and leptin mRNAs in adipose tissue.  相似文献   

20.
Seed oils enriched in omega‐7 monounsaturated fatty acids, including palmitoleic acid (16:1?9) and cis‐vaccenic acid (18:1?11), have nutraceutical and industrial value for polyethylene production and biofuels. Existing oilseed crops accumulate only small amounts (<2%) of these novel fatty acids in their seed oils. We demonstrate a strategy for enhanced production of omega‐7 monounsaturated fatty acids in camelina (Camelina sativa) and soybean (Glycine max) that is dependent on redirection of metabolic flux from the typical ?9 desaturation of stearoyl (18:0)‐acyl carrier protein (ACP) to ?9 desaturation of palmitoyl (16:0)‐acyl carrier protein (ACP) and coenzyme A (CoA). This was achieved by seed‐specific co‐expression of a mutant ?9‐acyl‐ACP and an acyl‐CoA desaturase with high specificity for 16:0‐ACP and CoA substrates, respectively. This strategy was most effective in camelina where seed oils with ~17% omega‐7 monounsaturated fatty acids were obtained. Further increases in omega‐7 fatty acid accumulation to 60–65% of the total fatty acids in camelina seeds were achieved by inclusion of seed‐specific suppression of 3‐keto‐acyl‐ACP synthase II and the FatB 16:0‐ACP thioesterase genes to increase substrate pool sizes of 16:0‐ACP for the ?9‐acyl‐ACP desaturase and by blocking C18 fatty acid elongation. Seeds from these lines also had total saturated fatty acids reduced to ~5% of the seed oil versus ~12% in seeds of nontransformed plants. Consistent with accumulation of triacylglycerol species with shorter fatty acid chain lengths and increased monounsaturation, seed oils from engineered lines had marked shifts in thermotropic properties that may be of value for biofuel applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号