首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Seasonal and spatial patterns of specific uptake rates of amino acids by bacteria in Lake Constance were studied. The total bacterial population was divided into small (0.2- to 1.0-micron) and large (1.0- to 3.0-micron) free-living bacteria and attached bacteria by fractionated filtration. Data for attached bacteria, received by retention on 3.0-micron-pore Nuclepore filters, were corrected for free-living bacteria in this fraction. Specific uptake rates based on autoradiography were also recorded. Specific uptake rates for attached bacteria ranged from 9.41 X 10(-11) to 6.11 X 10(-8) ng of C h-1 cell-1 and were therefore significantly greater than those for free-living bacteria during most time periods. However, they were not significantly different from those for cells proven to be active by autoradiography. Specific uptake rates for small free-living bacteria ranged between 7.68 X 10(-11) and 4.60 X 10(-9) ng of C h-1 cell-1. They were nearly in the same range of those for large free-living bacteria (5.10 X 10(-11) to 1.07 X 10(-8) ng of C h-1 cell-1), although both fractions exhibited pronounced differences in their seasonal and vertical distributions.  相似文献   

2.
M Simon 《Applied microbiology》1985,49(5):1254-1259
Seasonal and spatial patterns of specific uptake rates of amino acids by bacteria in Lake Constance were studied. The total bacterial population was divided into small (0.2- to 1.0-micron) and large (1.0- to 3.0-micron) free-living bacteria and attached bacteria by fractionated filtration. Data for attached bacteria, received by retention on 3.0-micron-pore Nuclepore filters, were corrected for free-living bacteria in this fraction. Specific uptake rates based on autoradiography were also recorded. Specific uptake rates for attached bacteria ranged from 9.41 X 10(-11) to 6.11 X 10(-8) ng of C h-1 cell-1 and were therefore significantly greater than those for free-living bacteria during most time periods. However, they were not significantly different from those for cells proven to be active by autoradiography. Specific uptake rates for small free-living bacteria ranged between 7.68 X 10(-11) and 4.60 X 10(-9) ng of C h-1 cell-1. They were nearly in the same range of those for large free-living bacteria (5.10 X 10(-11) to 1.07 X 10(-8) ng of C h-1 cell-1), although both fractions exhibited pronounced differences in their seasonal and vertical distributions.  相似文献   

3.
Malhotra B  Glass A 《Plant physiology》1995,108(4):1527-1536
Potassium influx and cellular [K+] were measured in the unicellular green alga Chlamydomonas reinhardtii after pretreatment in either 10 or 0 mM external K+ ([K]0). K+ (42K+ or 86Rb+) influx was mediated by a saturable, high-affinity transport system (HATS) at low [K+]0 and a linear, low-affinity transport system at high [K+]o. The HATS was typically more sensitive to metabolic inhibition (and darkness) than the low-affinity transport system. Membrane electrical potentials were determined by measuring the equilibrium distribution of tetraphenylphosphonium. These values, together with estimates of cytoplasmic [K+] (B. Malhotra and A.D.M. Glass [1995] Plant Physiol 108: 1537-1545), demonstrated that at 0.1 mM [K+]0 K+ uptake must be active. At higher [K+]0 (>0.3 mM) K+ influx appeared to be passive and possibly channel mediated. When cells were deprived of K+ for 24 h, the Vmax for the HATS increased from 50 x 10-6 to 85 x 10-6 nmol h-1 cell-1 and the Km value decreased from 0.25 to 0.162 mM. Meanwhile, cellular [K+] declined from 24 x 10-6 to 9 x 10-6 nmol cell-1. During this period influx increased exponentially, reaching its peak value after 18 h of K+ deprivation. This increase of K+ influx was not expressed when cells were exposed to inhibitors of protein synthesis. The use of 42K+ and 86Rb+ in parallel experiments demonstrated that Chlamydomonas discriminated in favor of K+ over Rb+, and this effect increased with the duration of K+ deprivation.  相似文献   

4.
Polyclonal rabbit antisera raised against sulfate-reducing bacteria (SRB) could detect several distinct populations of bacteria in sediment from the German Baltic Sea. The depth distribution of immunoreactive bacteria was determined by an indirect immunofluorescence filter method. Anti-Desulfovibrio desulfuricans DSM 1926 serum showed maximum bacterial numbers at a depth of 18 cm, with a concentration of 60 x 10(6) cells cm-3. With anti-Desulfovibrio baculatus DSM 2555 serum, counts were highest at the same depth, approaching 0.7 x 10(6) cells cm-3. Other significantly smaller populations were observed. Anti-SRBStrain 1 (lactate,vibrio) maxima were at 0 to 4 cm and at 17 to 18 cm. Anti-SRBStrain 2 (lactate,vibrio) serum showed several local maxima. Anti-SRBStrain 3 (lactate,oval) serum detected one single peak at a depth of 10 to 12 cm. Also determined were rates of sulfate reduction, total bacterial counts by acridine orange staining, and the viable counts by dilution series on anaerobic lactate medium. The total bacterial counts were highest (180 x 10(6) cells cm-3) at 3 to 4 cm and dropped to 24 x 10(6) cells cm-3 at 10 to 11 cm but showed additional local maxima reaching 140 x 10(6) cells cm-3 at a depth of 17 to 18 cm. Viable counts probable number) were above 10(5) CFU cm-3 at 0 to 3.6 cm but remained below 10(3) CFU at 7.2 to 18 cm. The sulfate reduction rate was maximal (107 nmol cm-3 day-1) at a depth of 1 to 2 cm, dropped to 10 nmol cm-3 day-1 at 12 to 13 cm, and reached 38 nmol cm-3 day-1 at 17 to 18 cm.  相似文献   

5.
Burkholderia is a physiologically and ecologically diverse genus that occurs commonly in assemblages of soil and rhizosphere bacteria. Although Burkholderia is known for its heterotrophic versatility, we demonstrate that 14 distinct environmental isolates oxidized carbon monoxide (CO) and possessed the gene encoding the catalytic subunit of form I CO dehydrogenase (coxL). DNA from a Burkholderia isolate obtained from a passalid beetle also contained coxL as do the genomic sequences of species H160 and Ch1-1. Isolates were able to consume CO at concentrations ranging from 100 ppm (vol/vol) to sub-ambient (< 60 ppb (vol/vol)). High concentrations of pyruvate inhibited CO uptake (> 2.5 mM), but mixotrophic consumption of CO and pyruvate occurred when initial pyruvate concentrations were lower (c. 400 lM). With the exception of an isolate most closely related to Burkholderia cepacia, all CO-oxidizing isolates examined were members of a nonpathogenic clade and were most closely related to Burkholderia species, B. caledonica, B. fungorum, B. oxiphila, B. mimosarum, B. nodosa, B. sacchari, B. bryophila, B. ferrariae, B. ginsengesoli, and B. unamae. However, none of these type strains oxidized CO or contained coxL based on results from PCR analyses. Collectively, these results demonstrate that the presence of CO oxidation within members of the Burkholderia genus is variable but it is most commonly found among rhizosphere inhabitants that are not closely related to B. cepacia.  相似文献   

6.
Microbial metabolism of carbon monoxide in culture and in soil.   总被引:9,自引:7,他引:2       下载免费PDF全文
Nocardia salmonicolor readily oxidized CO to CO2. Slight activity was found among species of Actinoplanes, Agromyces, Microbispora, Mycobacterium, and other nocardias, and no oxidation was detected in the algae, fungi, and other bacteria tested. Carbon monoxide was oxidized rapidly to CO2 in the dark in two soils incubated in air or under flooded conditions, but little of the 14C from 14CO was incorporated into the organic fraction of these soils. The reaction was microbial because appreciable CO was not converted to CO2 in autoclaved or gamma-irradiated soil. Heating the soil for 25 min at 70 degrees C destroyed its CO-oxidizing activity. The incorporation of 14CO2 into the cells of microorganisms in soil and soil suspension was not enhanced by incubating the samples in the presence of CO, suggesting that CO oxidation was not the result of autotrophic metabolism. The oxidation of 17 mu 1 of CO per liter in the head space was nearly complete in 6 h in soil incubated in air or anaerobically.  相似文献   

7.
Nocardia salmonicolor readily oxidized CO to CO2. Slight activity was found among species of Actinoplanes, Agromyces, Microbispora, Mycobacterium, and other nocardias, and no oxidation was detected in the algae, fungi, and other bacteria tested. Carbon monoxide was oxidized rapidly to CO2 in the dark in two soils incubated in air or under flooded conditions, but little of the 14C from 14CO was incorporated into the organic fraction of these soils. The reaction was microbial because appreciable CO was not converted to CO2 in autoclaved or gamma-irradiated soil. Heating the soil for 25 min at 70 degrees C destroyed its CO-oxidizing activity. The incorporation of 14CO2 into the cells of microorganisms in soil and soil suspension was not enhanced by incubating the samples in the presence of CO, suggesting that CO oxidation was not the result of autotrophic metabolism. The oxidation of 17 mu 1 of CO per liter in the head space was nearly complete in 6 h in soil incubated in air or anaerobically.  相似文献   

8.
Abstract Cells of Pseudomonas carboxydovorans from the exponential growth phase revealed the major portion (87%) of CO dehydrogenase attached to the inner aspect of the cytoplasmic membrane. In stationary cells only about half of the total amount of the enzyme remained membrane-bound, and a drop of the CO-oxidizing activity with O2 was observed. The CO-oxidizing activity with the unphysiological electron acceptor methylene blue, which does not need any contact of the enzyme with the membrane, always exceeded that with O2. Measurements of respiration rates of extracts with different electron donors in addition to CO suggested that the electron transport chain is not rate-limiting. It is concluded that the electron flow from CO to O2 in intact cells of P. carboxydovorans is controlled by the amount of CO dehydrogenase attached to a membrane-bound electron acceptor.  相似文献   

9.
Microbial oxidation and assimilation of propylene.   总被引:2,自引:1,他引:1       下载免费PDF全文
Hydrocarbon-utilizing microorganisms in our culture collection oxidized propylene but could not utilize it as the sole source of carbon and energy. When propane-grown cells of Mycobacterium convulutum were placed on propylene, acrylate, the terminally oxidized, three-carbon unsaturated acid, accumulated. A mixed culture and an axenic culture (strain PL-1) that utilized propylene as the sole source of carbon and energy were isolated from soil. Respiration rates, enzyme assays, fatty acid profiles, and 14CO2 incorporation experiments suggest that both the mixed culture and strain PL-1 oxidize propylene via attack at the double bond, resulting in a C2+C1 cleavage of the molecule.  相似文献   

10.
Carbon monoxide (CO) is both a ubiquitous atmospheric trace gas and an air pollutant. While aerobic CO-degrading microorganisms in soils and oceans are estimated to remove ~370 Tg of CO per year, the presence of CO-degrading microorganisms in above-ground habitats, such as the phyllosphere, and their potential role in CO cycling remains unknown. CO-degradation by leaf washes of two common British trees, Ilex aquifolium and Crataegus monogyna, demonstrated CO uptake in all samples investigated. Based on the analyses of taxonomic and functional genes, diverse communities of candidate CO-oxidizing taxa were identified, including members of Rhizobiales and Burkholderiales which were abundant in the phyllosphere at the time of sampling. Based on predicted genomes of phyllosphere community members, an estimated 21% of phyllosphere bacteria contained CoxL, the large subunit of CO-dehydrogenase. In support of this, data mining of publicly available phyllosphere metagenomes for genes encoding CO-dehydrogenase subunits demonstrated that, on average, 25% of phyllosphere bacteria contained CO-dehydrogenase gene homologues. A CO-oxidizing Phyllobacteriaceae strain was also isolated from phyllosphere samples which contains genes encoding both CO-dehydrogenase as well as a ribulose-1,5-bisphosphate carboxylase-oxygenase. These results suggest that the phyllosphere supports diverse and potentially abundant CO-oxidizing bacteria, which are a potential sink for atmospheric CO.  相似文献   

11.
Nitrification was investigated in a model freshwater sediment by the combined use of microsensors and fluorescence in situ hybridization with rRNA-targeted oligonucleotide probes. In situ nitrification activity was restricted mainly to the upper 2 mm of the sediment and coincided with the maximum abundance of nitrifying bacteria, i.e. 1.5 x 107 cells cm-3 for ammonia-oxidizing Beta-proteobacteria (AOB) and 8.6 x 107 cells cm-3 for Nitrospira-like nitrite-oxidizing bacteria (NOB). Cell numbers of AOB decreased more rapidly with depth than numbers of NOB. For the first time, Nitrospira-like bacteria could be quantified and correlated with in situ nitrite oxidation rates in a sediment. Estimated cell-specific nitrite oxidation rates were 1.2-2.7 fmol NO2- cell-1 h-1.  相似文献   

12.
The rate of CO conversion by a pure culture of a thermophilic CO-oxidizing, H2-producing bacterium Carboxydocella sp. strain 1503 was determined by the radioisotopic method. The overall daily uptake of 14CO by the bacterium was estimated at 38-56 micromol CO per 1 ml of the culture. A radioisotopic method was developed to separate and quantitatively determine the products of anaerobic CO conversion by microbial communities in hot springs. The new method was first tested on the microbial community from a sample obtained from a hot spring in Kamchatka. The potential rate of CO conversion by the anaerobic microbial community was found to be 40.75 nmol CO/cm3 sediment per day. 85% of the utilized 14CO was oxidized to carbon dioxide; 14.5% was incorporated into dissolved organic matter, including 0.2% that went into volatile fatty acids; 0.5% was used for cell bio mass production; and only just over 0.001% was converted to methane.  相似文献   

13.
It is now universally recognized that only a portion of aquatic bacteria is actively growing, but quantitative information on the fraction of living versus dormant or dead bacteria in marine sediments is completely lacking. We compared different protocols for the determination of the dead, dormant, and active bacterial fractions in two different marine sediments and at different depths into the sediment core. Bacterial counts ranged between (1.5 +/- 0.2) x 10(8) cells g(-1) and (53.1 +/- 16.0) x 10(8) cells g(-1) in sandy and muddy sediments, respectively. Bacteria displaying intact membrane (live bacterial cells) accounted for 26 to 30% of total bacterial counts, while dead cells represented the most abundant fraction (70 to 74%). Among living bacterial cells, nucleoid-containing cells represented only 4% of total bacterial counts, indicating that only a very limited fraction of bacterial assemblage was actively growing. Nucleoid-containing cells increased with increasing sediment organic content. The number of bacteria responsive to antibiotic treatment (direct viable count; range, 0.3 to 4.8% of the total bacterial number) was significantly lower than nucleoid-containing cell counts. An experiment of nutrient enrichment to stimulate a response of the dormant bacterial fraction determined a significant increase of nucleoid-containing cells. After nutrient enrichment, a large fraction of dormant bacteria (6 to 11% of the total bacterial number) was "reactivated." Bacterial turnover rates estimated ranged from 0.01 to 0.1 day(-1) but were 50 to 80 times higher when only the fraction of active bacteria was considered (on average 3.2 day(-1)). Our results suggest that the fraction of active bacteria in marine sediments is controlled by nutrient supply and availability and that their turnover rates are at least 1 order of magnitude higher than previously reported.  相似文献   

14.
Biosynthesis of exopolysaccharide by Pseudomonas aeruginosa.   总被引:37,自引:8,他引:29       下载免费PDF全文
In batch cultures of Pseudomonas aeruginosa, the maximum rate of exopolysaccharide synthesis occurred during exponential growth. In nitrogen-limited continuous culture, the specific rate of exopolysaccharide synthesis increased from 0.27 g g of cell-1 h-1 at a dilution rate (D) of 0.05 h-1 to 0.44 g g of cells h-1 at D=0.1 H-1. The yield of exopolysaccharide on the basis of glucose used was in the range of 56 to 64%. Exopolysaccharide was also synthesized in carbon-limited cultures at 0.19 g g of cell-1 h-1 at D=0.05 h-1 in a 33% yield. Nonmucoid variants appeared after seven generations in continuous culture and rapidly increased in proportion to the total number of organisms present.  相似文献   

15.
Factors Influencing Bacterial Production in a Shallow Estuarine System   总被引:1,自引:0,他引:1  
The bacterioplankton of the marine and brackish water zones of the complex system Ria de Aveiro was characterized as profiles of bacterial abundance and biomass productivity. During the warm season, total bacteria ranged from 0.2 to 8.5 x 109 cells L-1 and active bacteria number from 0.1 to 3.1 x 109 cells L-1. Total and active bacterial numbers were, on average, three times higher in brackish than in marine water. Bacterial productivity on different dates and different tides in the marine zone varied from 0.05 to 4.5 mg C L-1 h-1. Here the average productivity (1.1 mg C L-1 h-1) was 3.5 times less than in brackish water (average 3.8 mg C L-1 h-1; range 0.7-14.2 mg C L-1 h-1). Specific productivity varied from 0.05 to 2.61 fg C cell-1 h-1, a range that was similar throughout the ecosystem. However, specific productivity per active cell was 19% higher in brackish water. Bacterial production variation was best explained by the number of active bacteria, which, in turn, was highly associated with total bacterial number, temperature, and particulate organic carbon. In the marine zone, bacterial production was also influenced by depth and salinity. In the brackish zone, the set of independent variables explained a smaller percentage of bacterial production variation than in marine zone, suggesting greater importance of other variables. In the marine zone, and mainly near low tide, productivity was significantly higher (average 3.3 times) at the surface (down to 0.5 m) than in the deeper layers of the water column. This stratification of bacterial productivity was linked to the increased specific productivity per active cell, as no modification in the proportion of active cells in the population could be detected. The vertical profile of bacterial production in the deeper zone of this estuarine ecosystem, in which no clear salinity or thermal stratification occurs throughout the tidal cycle, seemed to reflect a biochemical stratification generated by increased phytoplankton exudation and/or by photochemical transformation of semilabile or recalcitrant organic compounds. Shallower water masses tend to blur this surface effect. The relative importance of photochemical transformation in the pattern of estuarine bacterial production will therefore tend to vary with the bathymetry of the system.  相似文献   

16.
Counts of heterotrophic bacteria in marine waters are usually in the order of 5 x 10(sup5) to 3 x 10(sup6) bacteria ml(sup-1). These numbers are derived from unspecific fluorescent staining techniques (J. E. Hobbie, R. J. Daley, and S. Jasper, Appl. Environ. Microbiol. 33:1225-1228, 1977; K. G. Porter and Y. S. Feig, Limnol. Oceanogr. 25:943-948, 1980) and are subsequently defined as total counts of bacteria. In samples from the Baltic Sea, the North Sea (Skagerrak), and the northeastern Mediterranean Sea, we found that only a minor fraction (2 to 32%) of total counts can be scored as bacteria with nucleoids. Lack of DNA no doubt means inactive cells; therefore, a much lower number of bacteria that grow at rates higher than those previously estimated must be responsible for the measured bacterial production in these seas. The remaining bacterium-sized and/or -shaped particles included in total counts may be cell residues of virus-lysed bacteria (ghosts) or remains of protozoan grazing.  相似文献   

17.
The growth and gas exchange of Seliberia carboxydohydrogena Z-1062 were studied in the regime of turbidostat when the conditions of gaseous nutrition were changed: a decrease in hydrogen concentration and an increase in carbon monoxide concentration, growth on two carbon sources (CO+CO2) and on two energy sources (H2+CO). The inhibition of the bacterial growth by CO was expressed in a decrease of the specific growth rate and in the reduced effectiveness of using a gaseous substrate. When the concentration of carbon monoxide was elevated from 0 to 40% and that of hydrogen was reduced from 80 to 40%, the specific growth rate of the cells was decreased from 0.4 to 0.04 h-1; here, the economic coefficient in terms of hydrogen fell from 3.6 to 0.62 g/g. The CO-oxidizing system of the bacterium was shown to be resistant. The rate of CO oxidation by the culture was from 0.6 to 0.8 L/h per 1 g of the synthesized biomass at the following concentration of gases in the medium (%); H2, 80-40; CO2, 5; O2, 15; CO, 10-40. The rate of CO oxidation by the culture rose when hydrogen concentration was decreased and CO concentration was increased.  相似文献   

18.
Effects of sunlight on bacteriophage viability and structure.   总被引:12,自引:4,他引:8       下载免费PDF全文
Current estimates of viral abundance in natural waters rely on direct counts of virus-like particles (VLPs), using either transmission or epifluorescence microscopy. Direct counts of VLPs, while useful in studies of viral ecology, do not indicate whether the observed VLPs are capable of infection and/or replication. Rapid decay in bacteriophage viability under environmental conditions has been observed. However, it has not been firmly established whether there is a corresponding degradation of the virus particles. To address this question, viable and direct counts were carried out employing two Chesapeake Bay bacteriophages in experimental microcosms incubated for 56 h at two depths in the York River estuary. Viruses incubated in situ in microcosms at the surface yielded decay rates in full sunlight of 0.11 and 0.06 h-1 for CB 38 phi and CB 7 phi, respectively. The number of infective particles in microcosms in the dark and at a depth of 1 m was not significantly different from laboratory controls, with decay rates averaging 0.052 h-1 for CB 38 phi and 0.037 h-1 for CB 7 phi. Direct counts of bacteriophages decreased in teh estuarine microcosms, albeit only at a rate of 0.028 h-1, and were independent of treatment. Destruction of virus particles is concluded to be a process separate from loss of infectivity. It is also concluded that strong sunlight affects the viability of bacteriophages in surface waters, with the result that direct counts of VLPs overestimate the number of bacteriophage capable of both infection and replication. However, in deeper waters, where solar radiation is not a significant factor, direct counts should more accurately estimate numbers of viable bacteriophage.  相似文献   

19.
An in vitro chemostat system was used to study the growth and the expression of iron-regulated outer-membrane proteins (IROMPs) by biofilm cells of Pseudomonas aeruginosa cultivated under conditions of iron limitation. The population of the planktonic cells decreased when the dilution rate was increased. At a dilution rate of 0.05 h-1, the populations of planktonic cells of both mucoid and nonmucoid P. aeruginosa were 3 x 10(9) cells/mL. This value dropped to 5 x 10(6) cells/mL when the dilution rate was increased to 1.0 h-1. The reverse was observed for the biofilm cells. The number of biofilm cells colonising the silicone tubing increased when the dilution rate was increased. The number of biofilm cells of the mucoid strain at steady state was 2 x 10(8) cells/cm (length) when the dilution rate was fixed at 0.05 h-1. The figure increased to 8 x 10(9) cells/cm when the dilution rate was increased to 1.0 h-1. The population of biofilm cells of the nonmucoid strain was 9 x 10(7) cells/cm (length) when the dilution rate was 0.05 h-1. It increased to 2 x 10(9) cells/cm when the dilution rate was set at 1.0 h-1. The expression of IROMPs was induced in the biofilm cells of both mucoid and nonmucoid strains when the dilution rates were 0.05 and 0.2 h-1. IROMPs were reduced but still detectable at the dilution rate of 0.5 h-1. However, the expression of IROMPs was repressed when the dilution rate was increased to 1.0 h-1. The data suggest that the biofilm cells of P. aeruginosa switch on the expression of IROMPs to assist iron acquisition when the dilution rate used for the chemostat run is below 0.5 h-1. The high affinity iron uptake system is not required by the biofilm cells when the dilution rate is increased because the trace amount of iron present in the chemostat is sufficient for the growth of adherent biofilm cells.  相似文献   

20.
The research performed in August 2004 within the framework of the Russian-American Long-term Census of the Arctic (RUSALCA) resulted in the first data concerning the rates of the key microbial processes in the water column and bottom sediments of the Bering strait and the Chukchi Sea. The total bacterial counts in the water column varied from 30 x 10(3) cells ml(-1) in the northern and eastern parts to 245 x 10(3) cells ml(-1) in the southern part. The methane content in the water column of the Chukchi sea varied from 8 nmol CH4 l(-1) in the eastern part of the sea to 31 nmol CH4 l(-1) in the northern part of the Herald Canyon. Active microbial processes occurred in the upper 0-3 cm of the bottom sediments; the methane formation rate varied from 0.25 to 16 nmol CH4 dm(-3) day(-1). The rates of methane oxidation varied from 1.61 to 14.7 nmol CH4 dm(-3) day(-1). The rates of sulfate reduction varied from 1.35 to 16.2 micromol SO4(2-) dm(-3) day(-1). The rate of methane formation in the sediments increased with depth, while sulfate reduction rates decreased (less than 1 micromol SO4(2-) dm(-3) day(-1)). These high concentrations of biogenic elements and high rates of microbial processes in the upper sediment layers suggest a specific type of trophic chain in the Chukchi Sea. The approximate calculated balance of methane emission from the water column into the atmosphere is from 5.4 to 57.3 micromol CH4 m(-2) day(-1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号